首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Characterization of protein kinase C in early Xenopus embryogenesis   总被引:2,自引:0,他引:2  
Recently, we presented evidence that protein kinase C (PKC) is involved in mediating the endogenous signals that induced competent Xenopus ectoderm to differentiate to neural tissue. We report here that PKC is already strongly activated in neural-induced ectoderm from midgastrula embryos and that this activation runs parallel with an increase in the level of inositol phosphates. We further identify several proteins that are phosphorylated, both in natural neural-induced ectoderm and in TPA-treated ectoderm, suggesting that they are phosphorylated through the PKC route. We found no major changes in PKC activity among different pregastrula stages, including the unfertilized egg. However, PKC isolated from animal, ectodermal cells is highly sensitive to Ca2+ and can be activated by low concentrations, (6-25 microM) of arachidonic acid, while PKC isolated from vegetal, endodermal cells is more insensitive to Ca2+ and cannot be activated by arachidonic acid. These results suggest that different PKC isozymes are present in animal and vegetal cells.  相似文献   

2.
L-Type calcium channel was expressed in Xenopus laevis oocytes injected with RNAs coding for different cardiac Ca2+ channel subunits, or with total heart RNA. The effects of activation of protein kinase C (PKC) by the phorbol ester PMA (4 beta-phorbol 12-myristate 13-acetate) were studied. Currents through channels composed of the main (alpha 1) subunit alone were initially increased and then decreased by PMA. A similar biphasic modulation was observed when the alpha 1 subunit was expressed in combination with alpha 2/delta, beta and/or gamma subunits, and when the channels were expressed following injection of total rat heart RNA. No effects on the voltage dependence of activation were observed. The effects of PMA were blocked by staurosporine, a protein kinase inhibitor. beta subunit moderate the enhancement caused by PMA. We conclude that both enhancement and inhibition of cardiac L-type Ca2+ currents by PKC are mediated via an effect on the alpha 1 subunit, while the beta subunit may play a mild modulatory role.  相似文献   

3.
The mechanism of modulation of sodium channel alpha-subunits (Type IIA) by a protein kinase C (PKC) activator was studied on single channel level. It was found that: (i) time constants for channel activation were prolonged; (ii) inactivation remained virtually unchanged; (iii) peak sodium inward current was reduced as evidenced by calculation of average sodium currents; and (iv) time constants for current activation and decay were prolonged. (i), (iii) and (iv) were voltage dependent, being most prominent at threshold potentials. The data show that a voltage dependent action on the activation gate can account for the observed reduction of peak inward sodium current and prolongation of current decay in macroscopic experiments.  相似文献   

4.
Doolen S  Zahniser NR 《FEBS letters》2002,516(1-3):187-190
The hypothesis that specific protein kinase C (PKC) isoforms regulate dopamine transporter (DAT) function was tested in Xenopus laevis oocytes expressing human (h)DAT. Activation of conventional PKCs (cPKCs) and novel PKCs (nPKCs) using 10 nM phorbol 12-myristate 13-acetate (PMA) significantly inhibited DAT-associated transport currents. This effect was reversed by isoform-non-selective PKC inhibitors, selective inhibitors of cPKCs and deltaPKC, and by Ca2+ chelation. By contrast, the epsilonPKC translocation inhibitor peptide had no effect on PMA-induced inhibition of hDAT transport-associated currents. Thus, the primary mechanism by which PMA regulates hDAT expressed in oocytes appears to be by activating cPKC(s).  相似文献   

5.
Protein kinase C and progesterone-induced maturation in Xenopus oocytes   总被引:2,自引:0,他引:2  
Though progesterone-induced maturation has been studied extensively in Xenopus oocytes, the mechanism whereby the prophase block arrest is released is not well understood. The current hypothesis suggests that a reduction in cAMP and subsequent inactivation of cAMP-dependent protein kinase is responsible for reentry into the cell cycle. However, several lines of evidence indicate that maturation can be induced without a concomitant reduction in cAMP. We show that the mass of diacylglycerol in whole oocytes and plasma membranes decreases 29% and 10% respectively, within the first 15 sec after the addition of progesterone. Diacylglycerol in plasma membranes further decreased 59% by 5 min. We also show that the protein kinase C inhibitors sphingosine and staurosporine can induce oocyte maturation. In addition, the synthetic diglyceride, DiC8, and microinjected PKC can inhibit or delay progesterone-induced maturation. These results together suggest that a transient decrease in protein kinase C activity may regulate entry into the cell cycle. The mechanism whereby DAG is decreased in response to progesterone is unclear. Initial studies show that progesterone leads to a decrease in IP3 suggesting that progesterone may act by reducing the hydrolysis of PIP2. On the other hand, progesterone caused a decrease in the amount of [3H]arachidonate labelling in DAG during the same time suggesting that progesterone may stimulate lipase activity. The relationship between postulated changes in the PKC pathway and those hypothesized for the PKA pathway are discussed.  相似文献   

6.
7.
A number of studies have demonstrated the activation of phospholipase C-mediated hydrolysis of phosphatidylcholine (PC-PLC) both by growth factors and by the product of the ras oncogene, p21ras. Evidence has been presented indicating that the stimulation of this phospholipid degradative pathway is sufficient to activate mitogenesis in fibroblasts as well as that it is sufficient and necessary for induction of maturation in Xenopus laevis oocytes. However, the mechanism whereby PC-PLC transduces mitogenic signals triggered by growth factors or oncogenes remains to be elucidated. In this study, data are presented that show the involvement of protein kinase C zeta subspecies in the channelling of the mitogenic signal activated by insulin-p21ras-PC-PLC in Xenopus oocytes as well as the lack of a critical role of protein kinase C isotypes alpha, beta, gamma, delta, and epsilon in these pathways.  相似文献   

8.
Glutamate receptors and protein kinase C (PKC) may play significant roles in long-term potentiation in hippocampus. To clarify the regulatory involvement of PKC in the functions of glutamate receptors, we examined the effects of PKC activation on current response induced by the activation of each subtype of glutamate receptor in Xenopus oocytes injected with rat brain RNA. Treatment with the PKC activator, 12-O-tetradecanoylphorbol-13-acetate (TPA), potentiated N-methyl-D-aspartate (NMDA)-induced current by about 2.5-fold, although it did not affect kainate-induced current at all. Quisqualate-mediated oscillatory current was almost abolished by this treatment. The TPA-induced potentiation of NMDA current was suppressed by staurosporine, an inhibitor of protein kinases. Pretreatment with 4-O-methyl-TPA, an inactive phorbol ester, had no effect on NMDA current. Current response mediated by NMDA receptors would thus appear to be modulated by PKC.  相似文献   

9.
Previous studies in this laboratory have shown that insulin treatment of Xenopus oocytes leads to an increase in phosphorylation of ribosomal protein S6. To investigate the mechanism of this increase, S6 kinase activity was measured in lysates of oocytes exposed to insulin. Insulin caused a rapid 4- to 6-fold increase in S6 kinase activity, which was maximal by 20 min and which could be reversed by removal of insulin prior to homogenization. Dose-response curves showed a detectable increase in specific activity at 1 nM insulin with a maximal effect at 100 nM. Treatment of oocytes with puromycin did not prevent this increase in S6 kinase activity, suggesting activation rather than synthesis of the enzyme. DEAE-Sephacel chromatography of extracts from insulin-treated oocytes revealed two peaks of S6 kinase activity, and the specific activity of the peak eluting at 300 nM NaCl was increased 3-fold in oocytes treated with insulin. The same peak of S6 kinase activity was increased 40% within 10 min in oocytes injected with highly purified insulin-receptor kinase. These results indicate that the insulin-dependent increase in S6 phosphorylation is due, at least in part, to activation of an S6 protein kinase, and this activation may result from the action of the insulin receptor at an intracellular location.  相似文献   

10.
Using Xenopus oocytes as a model system, we investigated the possible involvement of ras proteins in the pathway leading to phosphorylation of ribosomal protein S6. Our results indicate that microinjection of oncogenic T24 H-ras protein (which contains valine at position 12) markedly stimulated S6 phosphorylation on serine residues in oocytes, whereas normal ras protein (which contains glycine at position 12) was without effect. The S6 phosphorylation activity in the cell extract from T24 ras protein-injected oocytes was increased significantly. In addition, injection of protein kinase C potentiated the induction of maturation and S6 phosphorylation by the oncogenic ras protein. A similar potentiation was detected when T24 ras protein-injected oocytes were incubated with active phorbol ester. These findings suggest that ras proteins activate the pathway linked to S6 phosphorylation and that protein kinase C has a synergistic effect on the ras-mediated pathway.  相似文献   

11.
K Taniyama  K Takeda  H Ando  T Kuno  C Tanaka 《FEBS letters》1991,278(2):222-224
The functional GABAB receptor was expressed in Xenopus oocytes by injecting mRNA obtained from the cerebellum of the rat. Application of GABA in the presence of bicuculline induced a hyperpolarization under current-clamp conditions and an outward current under voltage-clamp conditions. Baclofen mimicked the effect of GABA in the presence of bicuculline, and the effect of baclofen was antagonized by phaclofen. The GABA-induced outward current was slightly inhibited by treatment with GDP-beta-S and was completely inhibited by treatment with GTP-gamma-S. The activation of protein kinase C by 12-O-tetradecanoylphorbol-13-acetate (TPA), but not 4 alpha-phorbol-12,13-didecanoate, suppressed the GABAB receptor-mediated hyperpolarization, and the effect of TPA was antagonized by sphingosine. Thus, activation of protein kinase C inhibits the expressed GABAB receptor-mediated response.  相似文献   

12.
Nuclear factor kappa B (NF-kappa B) plays a critical role in the regulation of a large variety of cellular genes. However, the mechanism whereby this nuclear factor is activated remains to be determined. In this report, we present evidence that in oocytes from Xenopus laevis, (i) ras p21- and phospholipase C (PLC)-mediated phosphatidylcholine (PC) hydrolysis activates NF-kappa B and (ii) protein kinase C zeta subspecies is involved in the activation of NF-kappa B in response to insulin/ras p21/PC-PLC. Thus, the microinjection of either ras p21 or PC-PLC, or the exposure of oocytes to insulin, promotes a significant translocation to the nucleus of an NF-kappa B-like activity. This effect is not observed when oocytes are incubated with phorbol myristate acetate or progesterone, both of which utilize a ras p21-independent pathway for oocyte activation. These data strongly suggest a critical role of the insulin/ras p21/PC-PLC/protein kinase C zeta pathway in the control of NF-kappa B activation.  相似文献   

13.
We have used one activator and two inhibitors of protein kinase C (PKC) to examine the role of this enzyme in the induction of meiotic cell division. At 1 U/ml, phosphatidylcholine-specific phospholipase C increases DAG, alters intracellular pH and inhibits the induction of meiosis by insulin or progesterone. However, when added about 1.6 h after progesterone, the enzyme speeds the induction of cell division. Microinjection of inhibitor peptide (19-36) of PKC has little effect on progesterone action but stimulates the induction of meiosis by insulin. When the inhibitor peptide is injected about 2h after insulin addition, the peptide inhibits. A second PKC inhibitor, staurosporine, decreases PKC-dependent intracellular pH and in vitro oocyte PKC activity. At similar concentrations, staurosporine stimulates insulin or progesterone action, but, when added after about 2 h, the drug inhibits induction by insulin. We conclude that PKC is initially inhibitory to the induction of meiotic cell division but then may become synergistic.  相似文献   

14.
The phosphorylation of the alpha-subunit of Na+/K(+)-transporting ATPase (Na,K-ATPase) by cAMP-dependent protein kinase (PKA) and protein kinase C (PKC) was characterized in purified enzyme preparations of Bufo marinus kidney and duck salt gland and in microsomes of Xenopus oocytes. In addition, we have examined cAMP and phorbol esters, which are stimulators of PKA and PKC, respectively, for their ability to provoke the phosphorylation of alpha-subunits of Na,K-ATPase in homogenates of Xenopus oocytes. In the enzyme from the duct salt gland, phosphorylation by PKA and PKC occurs on serine and threonine residues, whereas in the enzyme from B. marinus kidney and Xenopus oocytes, phosphorylation by PKA occurs only on serine residues. Phosphopeptide analysis indicates that a site phosphorylated by PKA resides in a 12-kDa fragment comprising the C terminus of the polypeptide. Studies of phosphorylation performed on homogenates of Xenopus oocytes show that not only endogenous oocyte Na,K-ATPase but also exogenous Xenopus Na,K-ATPase expressed in the oocyte by microinjection of cRNA can be phosphorylated in response to stimulation of oocyte PKA and PKC. In conclusion, these data are consistent with the possibility that the alpha-subunit of Na,K-ATPase can serve as a substrate for PKA and PKC in vivo.  相似文献   

15.
In vivo casein phosphorylation was analysed in Xenopus full-grown oocytes arrested in the prophase of the meiotic cell division. The phosphorylation was inhibited by the protein kinase inhibitor (PKI) and also by heparin (3 g/ml; final concentration). casein phosphorylation was increased by spermine (2 mM). Therefore, protein kinase A and casein kinase II are both activein vivo in full-grown oocytes and may be involved in the prophase arrest of meiotic cell division.  相似文献   

16.
We have examined the presence of protein kinase C in oocytes of Chaetopterus pergamentaceus and its role in the initiation of germinal vesicle breakdown (GVBD). First, we demonstrated that the oocytes contain a phospholipid- and calcium-dependent protein kinase, protein kinase C (PKC). Since PKC is the primary intracellular receptor for phorbol esters, we tested the ability of phorbol 12,13-dibutyrate (PDBu) to induce GVBD and compared several critical events and processes involved in GVBD induced by PDBu to those induced normally (by seawater). Seawater and 100-200 nM PDBu induced chromosome condensation, spindle formation, and spindle migration over a similar time course. Both treatments induced similar alterations in the SDS-PAGE pattern of newly synthesized proteins. The synthesis of polypeptides of approximately 46 and 54 kDa increased specifically. Both treatments increased oocyte protein phosphorylation, especially of proteins of 22, 32, 46, 55, 64, and 84 kDa. Both treatments resulted in the activation of an M-phase-specific histone H1 kinase activity, which demonstrates the appearance of maturation-promoting factor. Staurosporine, a potent protein kinase C inhibitor, blocked GVBD and the activation of M-phase-specific H1 kinase, whereas HA1004, which preferentially antagonizes protein kinase A, had no effect. The results of this study demonstrate that protein kinase C can activate a wide spectrum of essential biochemical and morphological processes involved in GVBD. Further, these studies suggest that protein kinase C elicits GVBD by activating maturation-promoting factor and support the hypothesis that protein kinase C plays an essential role in oocyte maturation in this species.  相似文献   

17.
R Kim  J Rine    S H Kim 《Molecular and cellular biology》1990,10(11):5945-5949
Ras protein requires an intermediate of the cholesterol biosynthetic pathway for posttranslational modification and membrane anchorage. This step is necessary for biological activity. Maturation of Xenopus laevis oocytes induced by an oncogenic human Ras protein can be inhibited by lovastatin or compactin, inhibitors of the synthesis of mevalonate, an intermediate of cholesterol biosynthesis. This inhibition can be overcome by mevalonic acid or farnesyl diphosphate, a cholesterol biosynthetic intermediate downstream of mevalonate, but not by squalene, an intermediate after farnesyl pyrophosphate in the pathway. This study supports the idea that in Xenopus oocytes, the Ras protein is modified by a farnesyl moiety or its derivative. Furthermore, an octapeptide with the sequence similar to the C-terminus of the c-H-ras protein inhibits the biological activity of Ras proteins in vivo, suggesting that it competes for the enzyme or enzymes responsible for transferring the isoprenoid moiety (prenylation) in the oocytes. This inhibition of Ras prenylation by the peptide was also observed in vitro, using both Saccharomyces cerevisiae and Xenopus oocyte extracts. These observations show that Xenopus oocytes provide a convenient in vivo system for studies of inhibitors of the posttranslational modification of the Ras protein, especially for inhibitors such as peptides that do not penetrate cell membranes.  相似文献   

18.
The protein synthesis initiation factor 2 (eIF2) from Xenopus laevis oocytes has been extensively purified and characterized. Depending upon the purification scheme, eIF2 containing three subunits (alpha, beta and gamma) with Mr of 160,000, or two subunits (alpha and gamma) with Mr 90,000 can be obtained. The key step for obtaining the three subunit factor is the addition of 30 mM benzamidine to the initial homogenization, since this compound protects the highly sensitive beta subunit from proteolytic degradation. Subunit alpha of the oocyte eIF2 can be phosphorylated by the specific kinase from rabbit reticulocytes, whereas subunit beta is phosphorylated by oocyte casein kinase II. The oocyte eIF2 has a KD of 7.2 X 10(-8) M for GDP and 3.8 X 10(-6) M for GTP. The purified three subunit eIF2 has 0.4 mol of GDP bound/mol of factor. The crude preparations of eIF2 are not affected by Mg2+ in their exchange of guanine nucleotides or in the formation of ternary complexes with GTP and methionyl-tRNA, but these reactions are strongly inhibited by Mg2+ when the highly purified preparations are used.  相似文献   

19.
Mitogen-activated protein kinase (MAP kinase) is a serine/threonine kinase whose enzymatic activity is thought to play a crucial role in mitogenic signal transduction and also in the progesterone-induced meiotic maturation of Xenopus oocytes. We have purified MAP kinase from Xenopus oocytes and have shown that the protein is present in metaphase ll oocytes under two different forms: an inactive 41-kD protein able to autoactivate and to autophosphorylate in vitro, and an active 42-kD kinase resolved into two tyrosine phosphorylated isoforms on 2D gels. During meiotic maturation, MAP kinase becomes tyrosine phosphorylated and activated following the activation of the M-phase promoting factor (MPF), a complex between the p34cdc2 kinase and cyclin B. In vivo, MAP kinase activity displays a different stability in metaphase l and in metaphase II: protein synthesis is required to maintain MAP kinase activity in metaphase I but not in metaphase II oocytes. Injection of either MPF or cyclin B into prophase oocytes promotes tyrosine phosphorylation of MAP kinase, indicating that its activation is a downstream event of MPF activation. In contrast, injection of okadaic acid, which induces in vivo MPF activation, promotes only a very weak tyrosine phosphorylation of MAP kinase, suggesting that effectors other than MPF are required for the MAP kinase activation. Moreover, in the absence of protein synthesis, cyclin B and MPF are unable to promote in vivo activation of MAP kinase, indicating that this activation requires the synthesis of new protein(s). © 1993 Wiley-Liss, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号