首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effects of brain ischemia on the maximum binding capacity (Bmax) and affinity (Kd) of A1 receptors were studied in the rat cerebral cortex, with an in vitro approach. The results were correlated with changes in 3H-adenosine release, studied under identical experimental conditions. Fifteen minutes of in vitro ‘ischemia’ (hypoxic, glucose-free medium) induced a significant increase in both Bmax (2398±132 fmol/mg protein, 151% of the control, P<0.05) and in Kd (2.43±0.12 nM, 161% of the control, P<0.01). At the same time, an increase in tritium efflux from [3H]-adenosine labeled cerebral cortex slices to 324% of the control was observed. A trend toward normalization was evident 5–15 min after ‘reoxygenation’ (restoring normal medium), but the binding parameters were still altered after 60 min (Bmax 2110±82 fmol/mg protein, Kd 2.26±0.14 nM, P<0.01 vs the corresponding control) as was adenosine release (196% of the control). These findings suggest that the increased availability of adenosine and its receptors may be a defense mechanism against ischemic injury, while the reduced affinity of A1 receptors, possibly due to desensitization, may be a sign of ischemia-induced cellular damage.  相似文献   

2.
腺苷在脑缺血过程中的双重作用   总被引:4,自引:0,他引:4  
刘大志  朱兴族 《生命科学》2005,17(3):227-230
随着内源性腺苷系统具有神经保护作用的提出,派生出新的课题——腺苷及其类似物能否治疗脑卒中等一系列神经系统疾病?随着研究的深入,这一问题已逐渐成为神经药理学研究的热点。大量的工作集中在腺苷及其类似物对脑卒中的治疗作用,但实验结果具有很大的不确定性。传统上认为系统性给予腺苷引起心率减慢、血压降低、脑供血减少,从而限制了腺苷的应用。因此,提出了合用外周腺苷受体拮抗剂、腺苷转运蛋白抑制剂及代谢阻断剂,这既能对抗其心血管副作用,又使得脑缺血区的内源性腺苷维持在较高水平,发挥神经保护作用。然而,在脑缺血的病理条件下,腺苷浓度已显著提升,逾越了其自调节的范围。在此情况下,继续强化腺苷的作用,是否有悖于机体自稳态的恢复?诚然,腺苷具有明显的神经保护作用,但近年的研究又显示腺苷及其某些代谢产物具有神经损伤作用,如何解释这些相互矛盾的现象?又如何评价腺苷在脑缺血过程中的作用?本文主要从作用机制上,综合评述腺苷在脑缺血过程中可能发挥的神经保护及损伤作用,以期为脑卒中的临床治疗和新药开发提供一定的参考。  相似文献   

3.
[3H]N6-cyclohexyladenosine binds with high affinity to sheep brain membranes with a drug specificity indicating an association with A1 adenosine receptors. The [3H]N6-cyclohexyladenosine binding site has been solubilized with sodium cholate being the only detergent able to maintain specific binding after solubilization. After solubilization, the kinetics and drug specificity of binding are virtually identical with those obtained in the intact membranes, indicating a conservation of the binding site after removal of the receptor from its lipid environment. Gel filtration experiments indicated an apparent molecular weight of 400,000 for the receptor-detergent complex and a Stokes radius of 6.2 nm.  相似文献   

4.
N6-Substituted adenosine analogues containing cyclic hydrazines or chiral hydroxy (ar)alkyl groups, designed to interact with the S2 and S3 receptor subregions, have been synthesized and their binding to the adenosine A1 and A2A receptors have been investigated. Examples of both types of compounds were found to exhibit highly selective binding (Ki in low nM range) to the rat A1 receptor.  相似文献   

5.
1. Guanosine-5-monophosphate (GMP) was evaluated as a neuroprotective agent against the damage observed in rat hippocampal slices submitted to an in vitro model of ischemia with or without the presence of the ionotropic glutamate receptor agonist, Kainic acid (KA).2. Cellular injury was evaluated by MTT reduction, lactate dehydrogenase (LDH) release assay, and measurement of intracellular ATP levels.3. In slices submitted to ischemic conditions, 1 mM GMP partially prevented the decrease in cell viability induced by glucose and oxygen deprivation and the addition of KA.4. KA or N-methyl-D-aspartate (NMDA) receptor antagonists, -D-glutamylamino-methylsulfonate (GAMS) or (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801, 20 M) also prevented toxicity in hippocampal slices under ischemic conditions, respectively.5. The association of GMP with GAMS or MK-801 did not induce additional protection than that observed with GMP or that classical glutamate receptor antagonists alone.6. GMP, probably by interacting with ionotropic glutamate receptors, attenuated the damage caused by glucose and oxygen deprivation in hippocampal slices. This neuroprotective action of GMP in this model of excitotoxicity is of outstanding interest in the search for effective therapies against ischemic injury.  相似文献   

6.
Zhou AM  Li QJ  Chen XL  Li WB 《生理学报》2001,53(4):265-269
采用放射性配基结合法,测定大鼠全脑缺血后海马细胞膜腺苷(adenosine,ADO)受体数量及亲和力的变化,以探讨其与脑缺血耐受形成之间的关系。发现缺血6min即可导致海马组织明显的神经元延迟性死亡(delayed neuron  相似文献   

7.
G protein-coupled receptors are known to form homo- and heteromers at the plasma membrane, but the stoichiometry of these receptor oligomers are relatively unknown. Here, by using bimolecular fluorescence complementation, we visualized for the first time the occurrence of heterodimers of metabotropic glutamate mGlu5 receptors (mGlu5R) and dopamine D2 receptors (D2R) in living cells. Furthermore, the combination of bimolecular fluorescence complementation and bioluminescence resonance energy transfer techniques, as well as the sequential resonance energy transfer technique, allowed us to detect the occurrence receptor oligomers containing more than two protomers, mGlu5R, D2R and adenosine A2A receptor (A2AR). Interestingly, by using high-resolution immunoelectron microscopy we could confirm that the three receptors co-distribute within the extrasynaptic plasma membrane of the same dendritic spines of asymmetrical, putative glutamatergic, striatal synapses. Also, co-immunoprecipitation experiments in native tissue demonstrated the existence of an association of mGlu5R, D2R and A2AR in rat striatum homogenates. Overall, these results provide new insights into the molecular composition of G protein-coupled receptor oligomers in general and the mGlu5R/D2R/A2AR oligomer in particular, a receptor oligomer that might constitute an important target for the treatment of some neuropsychiatric disorders.  相似文献   

8.
A1 adenosine receptors from rat brain membranes were solubilized with the zwitterionic detergent 3-[3-(cholamidopropyl)dimethylammonio]-1-propanesulfonate. The solubilized receptors retained all the characteristics of membrane-bound A1 adenosine receptors. A high and a low agonist affinity state for the radiolabelled agonist (R)-N6-[3H]phenylisopropyladenosine([3H]PIA) with KD values of 0.3 and 12 nM, respectively, were detected. High-affinity agonist binding was regulated by guanine nucleotides. In addition agonist binding was still modulated by divalent cations. The solubilized A1 adenosine receptors could be labelled not only with the agonist [3H]PIA but also with the antagonist 1,3-diethyl-8-[3H]phenylxanthine. Guanine nucleotides did not affect antagonist binding as reported for membrane-bound receptors. These results suggest that the solubilized receptors are still coupled to the guanine nucleotide binding protein Ni and that all regulatory functions are retained on solubilization.  相似文献   

9.
To identify the involvement of dopamine receptors in the transmembrane signaling of the adenosine receptor-G protein-adenylate cyclase system in the CNS, we examined the effects of pertussis toxin (islet-activating protein, IAP) and apomorphine on A1 adenosine agonist (-)N6-R-[3H]phenylisopropyladenosine ([3H]PIA) and antagonist [3H]xanthine amine congener ([3H]XAC) binding activity and adenylate cyclase activity in cerebral cortex membranes of the rat brain. Specific binding to a single class of sites for [3H]XAC with a dissociation constant (KD) of 6.0 +/- 1.3 nM was observed. The number of maximal binding sites (Bmax) was 1.21 +/- 0.13 pmol/mg protein. Studies of the inhibition of [3H]XAC binding by PIA revealed the presence of two classes of PIA binding states, a high-affinity state (KD = 2.30 +/- 1.16 nM) and a low-affinity state (KD = 1.220 +/- 230 nM). Guanosine 5'-(3-O-thio)triphosphate or IAP treatment reduced the number of the high-affinity state binding sites without altering the KD for PIA. Apomorphine (100 microM) increased the KD value 10-fold and decreased Bmax by approximately 20% for [3H]PIA. The effect of apomorphine on the KD value increase was irreversible and due to a conversion from high-affinity to low-affinity states for PIA. The effect was dose dependent and was mediated via D2 dopamine receptors, since the D2 antagonist sulpiride blocked the phenomenon. The inhibitory effect of PIA on adenylate cyclase activity was abolished by apomorphine treatment. There was no effect of apomorphine on displacement of [3H]quinuclidinyl benzilate (muscarinic ligand) binding by carbachol. These data suggest that A1 adenosine receptor binding and function are selectively modified by D2 dopaminergic agents.  相似文献   

10.
In this study a new set of thiazolo[5,4-d]pyrimidine derivatives was synthesized. These derivatives bear different substituents at positions 2 and 5 of the thiazolopyrimidine core while maintaining a free amino group at position-7. The new compounds were tested for their affinity and potency at human (h) A1, A2A, A2B and A3 adenosine receptors expressed in CHO cells. The results reveal that the higher affinity of these new set of thiazolopyrimidines is toward the hA1 and hA2A adenosine receptors subtypes and is tuned by the substitution pattern at both the 2 and 5 positions of the thiazolopyrimidine nucleus. Functional studies evidenced that the compounds behaved as dual A1/A2A antagonists/inverse agonists. Compound 3, bearing a 5-((2-methoxyphenyl) methylamino) group and a phenyl moiety at position 2, displayed the highest affinity (hA1 Ki?=?10.2?nM; hA2A Ki?=?4.72?nM) and behaved as a potent A1/A2A antagonist/inverse agonist (hA1 IC50?=?13.4?nM; hA2A IC50?=?5.34?nM).  相似文献   

11.
Yun XJ  Hu YY  Xian XH  Li SQ  Sun XC  Zhang M  Li QJ  Li WB 《中国应用生理学杂志》2008,24(4):430-433,I0010
目的:观察侧脑室注射腺苷A1受体(ARA1)反义寡聚脱氧核苷酸(As-ODN)对脑缺血预处理(CIP)脑保护作用的影响,进一步探讨腺苷A1受体在CIP脑保护作用中的作用。方法:将54只凝闭双侧椎动脉的Wistar大鼠分为Sham组、CIP组、损伤性脑缺血组、CIP 损伤性脑缺血组、双蒸水 CIP 损伤性脑缺血组、ARA1As-ODN组、ARA1As-ODN CIP组、和ARA1As-ODN CIP 损伤性脑缺血组。ARA1As-ODN的剂量分为10nmol/5μl和20nmol/5μl,溶于双蒸水中,侧脑室注射。所有动物均在Sham手术后或末次全脑缺血/再灌注后7d断头取脑,硫堇染色观察海马CA1区锥体神经元迟发性死亡(DND)情况。结果:Sham组和CIP组均未见DND。与Sham、CIP组相比,损伤性脑缺血组出现了明显的DND,表现为组织学分级(HG)升高和锥体神经元密度(ND)下降(P<0.05)。CIP可显著抑制损伤性脑缺血引起的DND。与CIP 损伤性缺血组相比,ARA1As-ODN CIP 损伤性脑缺血组出现了显著的DND,表现为HG升高、ND降低(P<0.05),这种变化与ARA1As-ODN的剂量呈明显正相关。结论:腺苷A1受体As-ODN可阻断CIP诱导的脑缺血耐受,进一步证实了腺苷A1受体表达上调参与CIP诱导的脑缺血耐受。  相似文献   

12.
A1 selective agonist and antagonist radioligands bind to the same A1 adenosine receptor binding subunit, as documented by photoaffinity labelling and partial peptide maps. In this study we document that although these radioligands recognize the same A1 adenosine receptor (A1AR), they recognize different numbers of A1ARs in bovine brain membranes, with agonist number being greater than antagonist number. Neither addition of guanine nucleotides nor removal of Mg2+ ions enhanced antagonist binding in membranes. On solubilization, agonists still recognized a greater number of A1ARs but addition of guanine nucleotides or removal of Mg2+ substantially increased the number of receptors detected with antagonist radioligands. The effects of Mg2+ and guanine nucleotides were not additive, suggesting that formation of a "low agonist-receptor-G protein state" by either modulating agent was sufficient to alter the receptor conformation such that it could be recognized by antagonist. These studies suggest that a proportion of the "precoupled A1AR-G protein complex" in membranes are in a conformation that cannot be recognized by antagonists and that membrane constraints are such that ions or guanine nucleotides cannot sufficiently modulate the conformation to allow it to recognize antagonists. On removal of membrane structure by solubilization, these constraints are removed.  相似文献   

13.
Adenosine A1 receptor (A1) protein and mRNA is increased in the nucleus accumbens following repeated cocaine treatment. In spite of this protein up-regulation, A1 agonist-stimulated [35S]GTPgammaS binding was attenuated in accumbens homogenates of rats withdrawn for 3 weeks from 1 week of daily cocaine injections. Cellular subfractionation revealed that the discrepancy between total A1 protein and G protein coupling resulted from a smaller proportion of receptors in the plasma membrane. The decrease in functional receptor in the plasma membrane was further indicated by diminished formation of heteromeric receptor complex consisting of A1 and dopamine D1A receptors. To explore the functional significance of the altered distribution of A1 receptors, at 3 weeks after discontinuing repeated cocaine or saline, animals were injected with cocaine and 45 min later the subcellular distribution of A1 receptors quantified. Whereas a cocaine challenge in repeated saline-treated animals induced a marked increase in membrane localization of the A1 receptor, the relative distribution of receptors in repeated cocaine rats was not affected by acute cocaine. These data suggest that the sorting and recycling of A1 receptors is dysregulated in the nucleus accumbens as the consequence of repeated cocaine administration.  相似文献   

14.
The status of the adenosine A1 receptor/adenylyl cyclase (A1R/AC) transduction pathway in rat brain was analysed at the end of pregnancy using different approaches. Pregnancy at term caused a significant decrease in the Bmax value obtained by saturation binding assays using [3H]DPCPX as radioligand, suggesting a down-regulation of adenosine A1 receptor. Moreover, A1 receptor immunodetection in pregnant rat membranes and the level of mRNA coding A1 receptor were significantly decreased. This loss of A1 receptor was associated with a significant increase in receptor affinity, since the KD value from the [3H]DPCPX saturation curve and Ki for N6-cyclohexyladenosine (CHA) were decreased in pregnant rats. Surprisingly, CHA-mediated inhibition of adenylyl cyclase was increased, reflecting enhanced receptor responsiveness. On the other hand, immunoblotting of different alphaGi-protein isoforms revealed a significant increase in alphaGi3 level in membranes from pregnant rats. Pre-incubation of membranes with anti-alphaGi3 antibody blocked the guanosine triphosphate (GTP) or CHA inhibitory effect on adenylyl cyclase in both pregnant and non-pregnant rats, pointing to alphaGi3 as the main isoform involved in the A1 receptor response. These results suggest that, at the end of pregnancy, there is a down-regulation of adenosine A1 receptors counterbalanced with a strengthened functionality, probably due to an increase in both alphaGi3 protein and receptor affinity.  相似文献   

15.
This study was performed to determine the involvement of type II phospholipase A2 (PLA2-II) in renal injury caused by ischemia and reperfusion. Ischemia and reperfusion significantly elevated levels of blood urea nitrogen and serum creatinine in rats. These increases were significantly reduced by i.v. administration of rabbit IgG F(ab′)2 fragments against rat PLA2-II. Increased levels of acid-stable PLA2 activity in the kidney were caused by ischemia and reperfusion, and were suppressed by administration of anti-PLA2-II F(ab′)2. Increased levels of myeloperoxidase activity, a marker of neutrophil infiltration, in the kidney were also reduced after anti-PLA2-II F(ab′)2 treatment. These results suggest that PLA2-II plays a pivotal role in pathogenesis of ischemia and reperfusion injury through induction of neutrophil infiltration.  相似文献   

16.
Barbiturates have been shown to be competitive antagonists at A1 adenosine receptors in radioligand binding studies. The present study investigates the effects of pentobarbital on the A1 receptor-mediated inhibition of neurotransmitter release from rabbit hippocampal slices. The inhibition of the electrically evoked release of [3H]noradrenaline by the A1 receptor agonist (R)-N6-phenylisopropyladenosine (R-PIA) was antagonized by pentobarbital with an apparent pA2 value of 3.5. Low concentrations of pentobarbital alone altered neither basal nor evoked release of [3H]noradrenaline, whereas 1,000 microM pentobarbital enhanced the basal and reduced the evoked release. In the presence of 8-phenyltheophylline, pentobarbital (200 microM and 1,000 microM) reduced the evoked noradrenaline release. Pentobarbital also antagonized the inhibition of [3H]acetylcholine release by R-PIA. In contrast to the noradrenaline release model, the evoked release of acetylcholine was enhanced by the presence of pentobarbital (50-500 microM), an effect that was lost in the presence of 8-phenyltheophylline. These results indicate that pentobarbital, in addition to a direct inhibitory action at higher concentrations, has a facilitatory effect on neurotransmitter release by blocking presynaptic A1 adenosine receptors. The possible relevance of these findings for the excitatory effects of barbiturates is discussed.  相似文献   

17.
The aim of the current study was to characterize the effects of chemical ischemia and reperfusion at the transductional level in the brain. Protein kinase C isoforms (, β1, β2, γ, δ and ) total levels and their distribution in the particulate and cytosolic compartments were investigated in superfused rat cerebral cortex slices: (i) under control conditions; (ii) immediately after a 5-min treatment with 10 mM NaN3, combined with 2 mM 2-deoxyglucose (chemical ischemia); (iii) 1 h after chemical ischemia (reperfusion). In control samples, all the PKC isoforms were detected; immediately after chemical ischemia, PKC β1, δ and isoforms total levels (cytosol + particulate) were increased by 2.9, 2.7 and 9.9 times, respectively, while isoform was slightly reduced and γ isoform was no longer detectable. After reperfusion, the changes displayed by , β1, γ, δ and were maintained and even potentiated, moreover, an increase in β2 (by 41 ± 12%) total levels became significant. Chemical ischemia-induced a significant translocation to the particulate compartment of PKC isoform, which following reperfusion was found only in the cytosol. PKC β1 and δ isoforms particulate levels were significantly higher both in ischemic and in reperfused samples than in the controls. Conversely, following reperfusion, PKC β2 and isoforms displayed a reduction in their particulate to total level ratios. The intracellular calcium chelator, 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid, 1 mM, but not the N-methyl-d-asparate receptor antagonist, MK-801, 1 μM, prevented the translocation of β1 isoform observed during ischemia. Both drugs were effective in counteracting reperfusion-induced changes in β2 and isoforms, suggesting the involvement of glutamate-induced calcium overload. These findings demonstrate that: (i) PKC isoforms participate differently in neurotoxicity/neuroprotection events; (ii) the changes observed following chemical ischemia are pharmacologically modulable; (iii) the protocol of in vitro chemical ischemia is suitable for drug screening.  相似文献   

18.
The expression levels and the subcellular localization of adenosine receptors (ARs) are affected in several pathological conditions as a consequence of changes in adenosine release and metabolism. In this respect, labelled probes able to monitor the AR expression could be a useful tool to investigate different pathological conditions. Herein, novel ligands for ARs, bearing the fluorescent 7-nitrobenzofurazan (NBD) group linked to the N1 (1,2) or N10 (3,4) nitrogen of a triazinobenzimidazole scaffold, were synthesized. The compounds were biologically evaluated as fluorescent probes for labelling A1 and A2B AR subtypes in bone marrow-derived mesenchymal stem cells (BM-MSCs) that express both receptor subtypes. The binding affinity of the synthetized compounds towards the different AR subtypes was determined. The probe 3 revealed a higher affinity to A1 and A2B ARs, showing interesting spectroscopic properties, and it was selected as the most suitable candidate to label both AR subtypes in undifferentiated MSCs.Fluorescence confocal microscopy showed that compound 3 significantly labelled ARs on cell membranes and the fluorescence signal was decreased by the cell pre-incubation with the A1 AR and A2B AR selective agonists, R-PIA and BAY 60-6583, respectively, thus confirming the specificity of the obtained signal. In conclusion, compound 3 could represent a useful tool to investigate the expression pattern of both A1 and A2B ARs in different pathological and physiological processes. Furthermore, these results provide an important basis for the design of new and more selective derivatives able to monitor the expression and localization of each different ARs in several tissues and living cells.  相似文献   

19.
Abstract: The influence of pH on the equilibrium dissociation constant and on kinetic association and dissociation constants was studied for adenosine receptor agonist L-N6-[adenine-2,8-3H, ethyl-2-3H]phenylisopropyladenosine ([3H]R-PIA) and antagonist 8-cyclopentyl-1,3-[3H]-dipropylxanthine ([3H]DPCPX). Two ionizable groups, of pK 7.0 and pK 7.4, are involved in the [3H]R-PIA associations with high- and low-affinity states of the receptor, and another group, of pK 6.0, is involved in the association with the low-affinity state. No ionizable group is involved in the dissociation process for the high-affinity state, whereas two ionizable groups, of pK 6.0 and 6.5, are involved in the low-affinity state. For [3H]DPCPX, three ionizable groups (pK 6.0, 7.4, and 8.0) are involved in the association process and only one group, (pK 6.0), is involved in the dissociation step. The apparent pK values obtained agree with histidine residues. We thus studied the effect of diethylpyrocarbonate (DEP), which reacts irreversibly with histidine residues, on agonist and antagonist binding to A1 adenosine receptors from pig brain cortical membranes. DEP treatment of membrane reduced the affinity (KD) and the total binding (R) of the agonist and the antagonist. Membrane preincubation with unlabeled ligand (R-PIA or DPCPX) prevented the effect of DEP modification observed when the same ligand, but with label, is added to the same membranes, but did not prevent the DEP modification on different, labeled ligand. The pattern of protective action of R-PIA, DPCPX, adenosine, and guanylylimidodiphosphate in DEP treatment and the displacement curves of radiolabeled agonist and antagonist by both unlabeled ligands indicated that the interaction site for agonist and antagonist binding is the same, although the complete mechanisms for recognition and binding differ.  相似文献   

20.
Adenosine A2A, cannabinoid CB1 and metabotropic glutamate 5 (mGlu5) receptors are all highly expressed in the striatum. The aim of the present work was to investigate whether, and by which mechanisms, the above receptors interact in the regulation of striatal synaptic transmission. By extracellular field potentials (FPs) recordings in corticostriatal slices, we demonstrated that the ability of the selective type 1 cannabinoid receptor (CB1R) agonist WIN55,212-2 to depress synaptic transmission was prevented by the pharmacological blockade or the genetic inactivation of A2ARs. Such a permissive effect of A2ARs towards CB1Rs does not seem to occur pre-synaptically as the ability of WIN55,212-2 to increase the R2/R1 ratio under a protocol of paired-pulse stimulation was not modified by ZM241385. Furthermore, the effects of WIN55,212-2 were reduced in slices from mice lacking post-synaptic striatal A2ARs. The selective mGlu5R agonist (RS)-2-chloro-5-hydroxyphenylglycine (CHPG) potentiated the synaptic effects of WIN55,212-2, and such a potentiation was abolished by A2AR blockade. Unlike the synaptic effects, the ability of WIN55,212-2 to prevent NMDA-induced toxicity was not influenced by ZM241385. Altogether, these results show that the state of activation of A2ARs regulates the synaptic effects of CB1Rs and that A2ARs may control CB1 effects also indirectly, namely through mGlu5Rs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号