首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Downregulation of Ski and SnoN co-repressors by anisomycin   总被引:1,自引:0,他引:1  
Proteasome pathway regulates TGF-beta signaling; degradation of activated Smad2/3 and receptors turns TGF-beta signal off, while degradation of negative modulators such as Ski and SnoN maintains the signal. We have found that anisomycin is able to downregulate Ski and SnoN via proteasome as TGF-beta does, but through a mechanism independent of Smad activation. The mechanism used by anisomycin to downregulate Ski and SnoN is also independent of MAPK activation and protein synthesis inhibition. TGF-beta signal was the only pathway described causing Ski and SnoN degradation, thus this new effect of anisomycin on endogenous Ski and SnoN proteins suggests alternative processes to downregulate these negative modulators of TGF-beta signaling.  相似文献   

2.
3.
SnoN and Ski oncoproteins are co-repressors for Smad proteins and repress TGF-beta-responsive gene expression. The smad7 gene is a TGF-beta target induced by Smad signaling, and its promoter contains the Smad-binding element (SBE) required for a positive regulation by the TGF-beta/Smad pathway. SnoN and Ski co-repressors also bind SBE but regulate negatively smad7 gene. Ski along with Smad4 binds and represses the smad7 promoter, whereas the repression mechanism by SnoN is not clear. Ski and SnoN overexpression inhibits smad7 reporter expression induced through TGF-beta signaling. Using chromatin immunoprecipitation assays, we found that SnoN binds smad7 promoter at the basal condition, whereas after a short TGF-beta treatment for 15-30 min SnoN is downregulated and no longer bound smad7 promoter. Interestingly, after a prolonged TGF-beta treatment SnoN is upregulated and returns to its position on the smad7 promoter, functioning probably as a negative feedback control. Thus, SnoN also seems to regulate negatively the TGF-beta-responsive smad7 gene by binding and repressing its promoter in a similar way to Ski.  相似文献   

4.
5.
The mouse Sno gene, a Ski proto-oncogene homolog, expresses two isoforms, SnoN and SnoN2 (also called sno -dE3), which differ from each other in a location downstream from the site of alternative splicing previously described in the human SNO gene. SnoN2 is missing a 138 nt coding segment present in mouse SnoN and human SNON . We have cloned and sequenced the human ortholog of mouse SnoN2 , the existence of which was predicted from conservation of the alternative splice donor site that produces the SnoN2 isoform. Mouse SnoN2 and SnoN are expressed throughout embryonic development, in neonatal muscle and in many adult tissues. SnoN2 is the major species in most tissues, but SnoN and SnoN2 are expressed at approximately equal levels in brain. In human tissues, SNON2 is the less abundantly expressed isoform. Expression of mouse SnoN and SnoN2 mRNAs is induced with immediate early kinetics upon serum stimulation of quiescent fibroblasts, even in the presence of the protein synthesis inhibitor cycloheximide, while Ski is not. Interestingly, although both isoforms of Sno are induced, SnoN2 induction is much higher than SnoN . These data are consistent with a role for Sno in the response to proliferation stimuli.  相似文献   

6.
7.
Ski/Sno and TGF-beta signaling   总被引:4,自引:0,他引:4  
Transforming growth factor-beta is a potent inhibitor of epithelial cell proliferation. Proteins involved in TGF-beta signaling are bona fide tumor suppressors and many tumor cells acquire the ability to escape TGF-beta growth inhibition through the loss of key signaling transducers in the pathway or through the activation of oncogenes. Recent studies indicate that there is a specific connection between the TGF-beta signaling pathway and the Ski/SnoN family of oncoproteins. We summarize evidence that Ski and SnoN directly associate with Smad proteins and block the ability of the Smads to activate expression of many if not all TGF-beta-responsive genes. This appears to cause abrogation of TGF-beta growth inhibition in epithelial cells.  相似文献   

8.
9.
10.
11.
The yeast Ski complex assists the exosome in the degradation of mRNA. The Ski complex consists of three components; Ski2, Ski3, and Ski8, believed to be present in a 1:1:1 stoichiometry. Measuring the mass of intact isolated endogenously expressed Ski complexes by native mass spectrometry we unambiguously demonstrate that the Ski complex has a hetero-tetrameric stoichiometry consisting of one copy of Ski2 and Ski3 and two copies of Ski8. To validate the stoichiometry of the Ski complex, we performed tandem mass spectrometry. In these experiments one Ski8 subunit was ejected concomitant with the formation of a Ski2/Ski3/Ski8 fragment, confirming the proposed stoichiometry. To probe the topology of the Ski complex we disrupted the complex and mass analyzed the thus formed subcomplexes, detecting Ski8-Ski8, Ski2-Ski3, Ski8-Ski2, and Ski8-Ski8-Ski2. Combining all data we construct an improved structural model of the Ski complex.  相似文献   

12.
The Ski complex (composed of Ski3p, Ski8p, and the DEVH ATPase Ski2p) is a central component of the 3'-5' cytoplasmic mRNA degradation pathway in yeast. Although the proteins of the complex interact with each other as well as with Ski7p to mediate degradation by exosome, a 3'-exonuclease complex, the nature of these interactions is not well understood. Here we explore interactions within the Ski complex and between the Ski complex and Ski7p using a directed two-hybrid approach combined with coimmunoprecipitation experiments. We also test the functional significance of these interactions in vivo. Our results suggest that within the Ski complex, Ski3p serves as a scaffold protein with its C terminus interacting with Ski8p, and the sub-C terminus interacting with Ski2p, while no direct interaction between Ski2p and Ski8p was found. Ski7p interacts with the Ski complex via its interaction with Ski8p and Ski3p. In addition, inactivating the Ski complex by mutating conserved residues in the DEVH helicase motif of Ski2 did not abrogate its interaction with Ski7p, indicating that Ski2p function is not necessary for this interaction.  相似文献   

13.
14.
15.
16.
17.
Y Wan  X Liu  M W Kirschner 《Molecular cell》2001,8(5):1027-1039
Degradation of SnoN is thought to play an important role in the transactivation of TGF-beta responsive genes. We demonstrate that the anaphase-promoting complex (APC) is a ubiquitin ligase required for the destruction of SnoN and that the APC pathway is regulated by TGF-beta. The destruction box of SnoN is required for its degradation in response to TGF-beta signaling. Furthermore, the APC activator CDH1 and Smad3 synergistically regulate SnoN degradation. Under these circumstances, CDH1 forms a quaternary complex with SnoN, Smad3, and APC. These results suggest that APC(CDH1) and SnoN play central roles in regulating growth through the TGF-beta signaling system.  相似文献   

18.
The yeast superkiller (SKI) genes were originally identified from mutations allowing increased production of killer toxin encoded by M "killer" virus, a satellite of the dsRNA virus L-A. XRN1 (SKI1) encodes a cytoplasmic 5'-exoribonuclease responsible for the majority of cytoplasmic RNA turnover, whereas SKI2, SKI3, and SKI8 are required for normal 3'-degradation of mRNA and for repression of translation of poly(A) minus RNA. Ski2p is a putative RNA helicase, Ski3p is a tetratricopeptide repeat (TPR) protein, and Ski8p contains five WD-40 (beta-transducin) repeats. An xrn1 mutation in combination with a ski2, ski3, or ski8 mutation is lethal, suggesting redundancy of function. Using functional epitope-tagged Ski2, Ski3, and Ski8 proteins, we show that Ski2p, Ski3p, and Ski8p can be coimmunoprecipitated as an apparent heterotrimeric complex. With epitope-tagged Ski2p, there was a 1:1:1 stoichiometry of the proteins in the complex. Ski2p did not associate with Ski3p in the absence of Ski8p, nor did Ski2p associate with Ski8p in the absence of Ski3p. However, the Ski3p/Ski8p interaction did not require Ski2p. In addition, ski6-2 or ski4-1 mutations or deletion of SKI7 did not affect complex formation. The identification of a complex composed of Ski2p, Ski3p, and Ski8p explains previous results showing phenotypic similarity between mutations in SKI2, SKI3, and SKI8. Indirect immunofluorescence of Ski3p and subcellular fractionation of Ski2p and Ski3p suggest that Ski2p and Ski3p are cytoplasmic. These data support the idea that Ski2p, Ski3p, and Ski8p function in the cytoplasm in a 3'-mRNA degradation pathway.  相似文献   

19.
20.
Recent data has implicated the Ski protein as being a physiologically relevant negative regulator of signaling by retinoic acid (RA). The mechanism by which Ski represses RA signaling is unknown. Co-immunoprecipitation and immunofluorescence assay showed that Ski and RARα are in the same complex in both the absence and presence of RA, which makes Ski different from other corepressors. We determined that Ski can stabilize RARα and HDAC3. These results suggest that Ski represses RA signaling by stabilizing corepressor complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号