首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The genus Methylomonas accommodates strictly aerobic, obligate methanotrophs, with their sole carbon and energy sources restricted to methane and methanol. These bacteria inhabit oxic-anoxic interfaces of various freshwater habitats and have attracted considerable attention as potential producers of a single-cell protein. Here, we characterize two fast-growing representatives of this genus, strains 12 and MP1T, which are phylogenetically distinct from the currently described Methylomonas species (94.0–97.3 % 16S rRNA gene sequence similarity). Strains 12 and MP1T were isolated from freshwater sediments collected in Moscow and Krasnodar regions, respectively. Cells of these strains are Gram-negative, red-pigmented, highly motile thick rods that contain a type I intracytoplasmic membrane system and possess a particulate methane monooxygenase (pMMO) enzyme. These bacteria grow between 8 and 45 °C (optimum 35 °C) in a relatively narrow pH range of 5.5–7.3 (optimum pH 6.6–7.2). Major carotenoids synthesized by these methanotrophs are 4,4′-diaplycopene-4,4′-dioic acid, 1,1′-dihydroxy-3,4-didehydrolycopene and 4,4′-diaplycopenoic acid. High biomass yield, of up to 3.26 g CDW/l, is obtained during continuous cultivation of MP1T on natural gas in a bioreactor at a dilution rate of 0.22 h?1. The complete genome sequence of strain MP1T is 4.59 Mb in size; the DNA G + C content is 52.8 mol%. The genome encodes four rRNA operons, one pMMO operon and 4,216 proteins. The genome sequence displays 82–85 % average nucleotide identity to those of earlier described Methylomonas species. We propose to classify these bacteria as representing a novel species of the genus Methylomonas, M. rapida sp. nov., with the type strain MP1T (=KCTC 92586T = VKM B-3663T).  相似文献   

3.
Spectra of five isolates (LMG 28358T, LMG 29879T, LMG 29880T, LMG 28359T and R-53705) obtained from gut samples of wild bumblebees of Bombus pascuorum, Bombus lapidarius and Bombus terrestris were grouped into four MALDI-TOF MS clusters. RAPD analysis revealed an identical DNA fingerprint for LMG 28359T and R-53705 which also grouped in the same MALDI-TOF MS cluster, while different DNA fingerprints were obtained for the other isolates.Comparative 16S rRNA gene sequence analysis of the four different strains identified Gilliamella apicola NCIMB 14804T as nearest neighbour species. Average nucleotide identity values of draft genome sequences of the four isolates and of G. apicola NCIMB 14804T were below the 96% threshold value for species delineation and all four strains and G. apicola NCIMB 14804T were phenotypically distinct. Together, the draft genome sequences and phylogenetic and phenotypic data indicate that the four strains represent four novel Gilliamella species for which we propose the names Gilliamella intestini sp. nov., with LMG 28358T as the type strain, Gilliamella bombicola sp. nov., with LMG 28359T as the type strain, Gilliamella bombi sp. nov., with LMG 29879T as the type strain and Gilliamella mensalis sp. nov., with LMG 29880T as the type strain.  相似文献   

4.
Ten Bifidobacterium strains, i.e., 6T3, 64T4, 79T10, 80T4, 81T8, 82T1, 82T10, 82T18, 82T24, and 82T25, were isolated from mantled guereza (Colobus guereza), Sumatran orangutan (Pongo abeli), silvery marmoset (Mico argentatus), golden lion tamarin (Leontopithecus rosalia), pied tamarin (Saguinus bicolor), and common pheasant (Phaisanus colchinus). Cells are Gram-positive, non-motile, non-sporulating, facultative anaerobic, and fructose 6-phosphate phosphoketolase-positive. Phylogenetic analyses based on the core genome sequences revealed that isolated strains exhibit close phylogenetic relatedness with Bifidobacterium genus members belonging to the Bifidobacterium bifidum, Bifidobacterium longum, Bifidobacterium pullorum, and Bifidobacterium tissieri phylogenetic groups. Phenotypic characterization and genotyping based on the genome sequences clearly show that these strains are distinct from each of the type strains of the so far recognized Bifidobacterium species. Thus, B. phasiani sp. nov. (6T3 = LMG 32224T = DSM 112544T), B. pongonis sp. nov. (64T4 = LMG 32281T = DSM 112547T), B. saguinibicoloris sp. nov. (79T10 = LMG 32232T = DSM 112543T), B. colobi sp. nov. (80T4 = LMG 32225T = DSM 112552T), B. simiiventris sp. nov. (81T8 = LMG 32226T = DSM 112549T), B. santillanense sp. nov. (82T1 = LMG 32284T = DSM 112550T), B. miconis sp. nov. (82T10 = LMG 32282T = DSM 112551T), B. amazonense sp. nov. (82T18 = LMG 32297T = DSM 112548T), pluvialisilvae sp. nov. (82T24 = LMG 32229T = DSM 112545T), and B. miconisargentati sp. nov. (82T25 = LMG 32283T = DSM 112546T) are proposed as novel Bifidobacterium species.  相似文献   

5.
Comparison of HaeIII- and HpaII-restriction profiles of PCR-amplified 16S-23S rDNA ITS regions of Gluconacetobacter sp. LMG 1529T and SKU 1109 with restriction profiles of reference strains of acetic acid bacteria described by Tr?ek and Teuber [34] revealed the same but unique restriction profiles for LMG 1529T and SKU 1109. Further analyses of nearly complete 16S rRNA gene sequences, nearly complete 16S-23S rDNA ITS sequences, as well as concatenated partial sequences of the housekeeping genes dnaK, groEL and rpoB, allocated both strains to a single phylogenetic cluster well separated from the other species of the genus Gluconacetobacter. DNA–DNA hybridizations confirmed their novel species identity by 73% DNA–DNA relatedness between both strains, and values below the species level (<70%) between SKU 1109 and the type strains of the closest phylogenetic neighbors. The classification of strains LMG 1529T and SKU 1109 into a single novel species was confirmed also by AFLP and (GTG)5-PCR DNA fingerprinting data, as well as by phenotypic data. Strains LMG 1529T and SKU 1109 can be differentiated from their closely related Gluconacetobacter species, Gluconacetobacter entanii and Gluconacetobacter hansenii, by their ability to form 2-keto-d-gluconic acid from d-glucose, their ability to use d-mannitol, d-gluconate and glycerol as carbon source and form acid from d-fructose, and their ability to grow without acetic acid. The major fatty acid of LMG 1529T and SKU 1109 is C18:1ω7c (60.2–64.8%). The DNA G + C content of LMG 1529T and SKU 1109 is 62.5 and 63.3 mol% respectively. The name Gluconacetobacter maltaceti sp. nov. is proposed. The type strain is LMG 1529T (= NBRC 14815T = NCIMB 8752T).  相似文献   

6.
7.
The phenotypic and genotypic characteristics of fourteen human clinical Achromobacter strains representing four genogroups which were delineated by sequence analysis of nusA, eno, rpoB, gltB, lepA, nuoL and nrdA loci, demonstrated that they represent four novel Achromobacter species. The present study also characterized and provided two additional reference strains for Achromobacter ruhlandii and Achromobacter marplatensis, species for which, thus far, only single strains are publicly available, and further validated the use of 2.1% concatenated nusA, eno, rpoB, gltB, lepA, nuoL and nrdA sequence divergence as a threshold value for species delineation in this genus. Finally, although most Achromobacter species can be distinguished by biochemical characteristics, the present study also highlighted considerable phenotypic intraspecies variability and demonstrated that the type strains may be phenotypically poor representatives of the species. We propose to classify the fourteen human clinical strains as Achromobacter mucicolens sp. nov. (with strain LMG 26685T [=CCUG 61961T] as the type strain), Achromobacter animicus sp. nov. (with strain LMG 26690T [=CCUG 61966T] as the type strain), Achromobacter spiritinus sp. nov. (with strain LMG 26692T [=CCUG 61968T] as the type strain), and Achromobacter pulmonis sp. nov. (with strain LMG 26696T [=CCUG 61972T] as the type strain).  相似文献   

8.
Four novel Gram-stain-positive, non spore forming and fructose-6-phosphate phosphoketolase-positive strains were isolated from the faeces of a cotton top tamarin (Saguinus oedipus) and an emperor tamarin (Saguinus imperator). Phylogenetic analyses based on 16S rRNA revealed that bifidobacterial strains TRE 1T exhibit close phylogenetic relatedness to Bifidobacterium catulorum DSM 103154 (96.0%) and Bifidobacterium tissieri DSM 100201 (96.0%); TRE DT and TRE HT were closely related to Bifidobacterium longum subsp. longum ATCC 15708T with similarity values of 97.4% and 97.5%, respectively; TRI 7T was closely related to Bifidobacterium tissieri DSM 100201 (96.0%). The Average Nucleotide Identity (ANI) and in silico DDH (isDDH) analysis with closest neighbour supported an independent phylogenetic position of all strains with values ranged from 74 to 85% for ANI and from 24 to 28% for isDDH. DNA base composition of the four strains was in the range of 58.3–63.5 mol% G + C. Based on the phylogenetic, genotypic and phenotypic data, the strains TRE 1T, TRE DT, TRE HT and TRI 7T clearly represent four novel taxa within the genus Bifidobacterium for which the names Bifidobacterium primatium sp. nov. (type strain TRE 1T = DSM 100687T = JCM 30945T), Bifidobacterium scaligerum sp. nov. (type strain TRE DT = DSM 103140T = JCM 31792T), Bifidobacterium felsineum sp. nov. (type strain TRE HT = DSM 103139T = JCM 31789T) and Bifidobacterium simiarum sp. nov. (type strain TRI 7T = DSM 103153T = JCM 31793) are proposed.  相似文献   

9.
Three forest and four botanical garden top soil isolates with unique MALDI-TOF mass spectra were identified as Paraburkholderia strains closely related to Paraburkholderia sartisoli through recA gene sequence analysis. OrthoANIu, digital DNA-DNA hybridization analyses and phylogenomic analyses demonstrated that the five strains represented two new Paraburkholderia species closely related to P. sartisoli. The genome of strain LMG 31841T had a cumulative size of 6.3 Mb and a G + C content of 62.64 mol%; strain LMG 32171T had a genome size of 5.8 Mb and a G + C content of 62.91 mol%. Hemolysis on horse blood agar, beta-galactosidase and phosphoamidase activity, and assimilation of adipic acid and trisodium citrate allowed phenotypic differentiation of strains LMG 31841T, LMG 32171T and P. sartisoli LMG 24000T. An analysis of the genomic potential for aromatic compound degradation yielded additional differences among strains representing these three species, but also highlighted some discrepancies between the presence of genes and pathways, and the phenotype revealed through growth experiments using a mineral salts medium supplemented with single aromatic compounds as carbon sources. We propose to classify all isolates from the present study into two novel Paraburkholderia species, for which we propose the names Paraburkholderia gardini with LMG 32171T (=CECT 30344T) as the type strain, and Paraburkholderia saeva with LMG 31841T (=CECT 30338T) as the type strain.  相似文献   

10.
The phenotypic and genotypic characteristics of seventeen Achromobacter strains representing MLST genogroups 2, 5, 7 and 14 were examined. Although genogroup 2 and 14 strains shared a DNA–DNA hybridization level of about 70%, the type strains of both genogroups differed in numerous biochemical characteristics and all genogroup 2 and 14 strains could by distinguished by nitrite reduction, denitrification and growth on acetamide. Given the MLST sequence divergence which identified genogroups 2 and 14 as clearly distinct populations, the availability of nrdA sequence analysis as a single locus identification tool for all Achromobacter species and genogroups, and the differential phenotypic characteristics, we propose to formally classify Achromobacter genogroups 2, 5, 7 and 14 as four novel Achromobacter species for which we propose the names Achromobacter insuavis sp. nov. (with strain LMG 26845T [= CCUG 62426T] as the type strain), Achromobacter aegrifaciens sp. nov. (with strain LMG 26852T [= CCUG 62438T] as the type strain), Achromobacter anxifer sp. nov. (with strain LMG 26857T [= CCUG 62444T] as the type strain), and Achromobacter dolens sp. nov. (with strain LMG 26840T [= CCUG 62421T] as the type strain).  相似文献   

11.
Four yellow pigmented strains (91A-561T, 91A-576, 91A-593T, and JM-1085T) isolated from plant materials, showed 97.2–98.7 % 16S rRNA gene sequence similarities among each other and were studied in a polyphasic approach for their taxonomic allocation. Cells of all four isolates were rod-shaped and stained Gram-negative. Comparative 16S rRNA gene sequence analysis showed that the four bacteria had highest sequence similarities to Chryseobacterium formosense (97.2–98.7 %), Chryseobacterium gwangjuense (97.1–97.8 %), and Chryseobacterium defluvii (94.6–98.0 %). Sequence similarities to all other Chryseobacterium species were below 97.5 %. Fatty acid analysis of the four strains showed Chryseobacterium typical profiles consisting of major fatty acids C15:0 iso, C15:0 iso 2-OH/C16:1 ω7c, C17:1 iso ω9c, and C17:0 iso 3-OH, but showed also slight differences. DNA–DNA hybridizations with type strains of C. gwangjuense, C. formosense, and C. defluvii resulted in values below 70 %. Isolates 91A-561T and 91A-576 showed DNA–DNA hybridization values >80 % indicating that they belonged to the same species; but nucleic acid fingerprinting showed that the two isolates represent two different strains. DNA–DNA hybridization results and the differentiating biochemical and chemotaxonomic properties showed, that both strains 91A-561T and 91A-576 represent a novel species, for which the name Chryseobacterium geocarposphaerae sp. nov. (type strain 91A-561T=LMG 27811T=CCM 8488T) is proposed. Strains 91A-593T and JM-1085T represent two additional new species for which we propose the names Chyrseobacterium zeae sp. nov. (type strain JM-1085T=LMG 27809T, =CCM 8491T) and Chryseobacterium arachidis sp. nov. (type strain 91A-593T=LMG 27813T, =CCM 8489T), respectively.  相似文献   

12.
Twelve Acetobacter pasteurianus-related strains with publicly available genomes in GenBank shared high 16S rRNA gene sequence similarity (>99.59%), but average nucleotide identity (ANI) and in silico DNA-DNA hybridization (DDH) values and multilocus sequence- and genome-based relatedness analyses suggested that they were divided into four different phylogenetic lineages. Relatedness analyses based on multilocus sequences, 1,194 core genes and whole-cell MALDI-TOF profiles supported that strains LMG 1590T and LMG 1591 (previously classified as the type strains of A. pasteurianus subsp. ascendens and paradoxus, respectively) and strain SLV-7T do not belong to A. pasteurianus. Strain SLV-7T, isolated from Korean traditional vinegar, shared low ANI (<91.0%) and in silico DDH (44.2%) values with all other Acetobacter type strains analyzed in this study, indicating that strain SLV-7T represents a new Acetobacter species. The phenotypic and chemotaxonomic analyses confirmed these results and therefore a new species named Acetobacter oryzifermentans sp. nov. is proposed with SLV-7T (= KACC 19301T = JCM 31096T) as the type strain. Strains LMG 1590T and LMG 1591 shared high ANI (99.4%) and in silico DDH (96.0%) values between them, but shared low ANI (<92.3%) and in silico DDH (<49.0%) values with other type strains analyzed in this study, indicating that strains LMG 1590T and LMG 1591 should be reclassified into a new single species that should be named Acetobacter ascendens sp. nov., comb. nov., with LMD 51.1T (= LMG 1590T = NCCB 51001T) as its type strain.  相似文献   

13.
Three plant rhizogenic strains O132T, O115 and O34 isolated from Cucumis sp. L. were assessed for taxonomic affiliation by using polyphasic taxonomic methods. Based on the results of the sequence analysis of the 16S rRNA and multilocus sequence analysis (MLSA) of the three housekeeping genes atpD, recA and rpoB, all the strains were clustered within the genus Agrobacterium where they form a novel branch. Their closest relative was Agrobacterium tomkonis (genomospecies G3). Moreover, digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) comparisons between strains O132T and O34 and their closest relatives provided evidence that they constitute a new species, because the obtained values were significantly below the threshold considered as a borderline for the species delineation. Whole-genome phylogenomic analysis also indicated that the cucumber strains are located within the separate, well-delineated biovar 1 sub-clade of the genus Agrobacterium. Furthermore, the physiological and biochemical properties of these strains allowed to distinguish them from their closest related species of the genus Agrobacterium. As a result of the performed overall characterization, we propose a new species as Agrobacterium cucumeris sp. nov., with O132T (=CFBP 8997T = LMG 32451T) as the type strain.  相似文献   

14.
15.
The plant tumorigenic strain NCPPB 1650T isolated from Rosa × hybrida, and four nonpathogenic strains isolated from tumors on grapevine (strain 384), raspberry (strain 839) and blueberry (strains B20.3 and B25.3) were characterized by using polyphasic taxonomic methods. Based on 16S rRNA gene phylogeny, strains were clustered within the genus Agrobacterium. Furthermore, multilocus sequence analysis (MLSA) based on the partial sequences of atpD, recA and rpoB housekeeping genes indicated that five strains studied form a novel Agrobacterium species. Their closest relatives were Agrobacterium sp. R89-1, Agrobacterium rubi and Agrobacterium skierniewicense. Authenticity of the novel species was confirmed by average nucleotide identity (ANI) and in silico DNA–DNA hybridization (DDH) comparisons between strains NCPPB 1650T and B20.3, and their closest relatives, since obtained values were considerably below the proposed thresholds for the species delineation. Whole-genome-based phylogeny further supported distinctiveness of the novel species, that forms together with A. rubi, A. skierniewicense and Agrobacterium sp. R89-1 a well-delineated sub-clade of Agrobacterium spp. named “rubi”. As for other species of the genus Agrobacterium, the major fatty acid of the strains studied was 18:1 w7c (73.42–78.12%). The five strains studied were phenotypically distinguishable from other species of the genus Agrobacterium. Overall, polyphasic characterization showed that the five strains studied represent a novel species of the genus Agrobacterium, for which the name Agrobacterium rosae sp. nov. is proposed. The type strain of A. rosae is NCPPB 1650T (=DSM 30203T = LMG 230T = CFBP 4470T = IAM 13558T = JCM 20915T).  相似文献   

16.
Two groups of previously undescribed anaerobic, gram-positive cocci recovered from human clinical infections were characterized using phenotypic and molecular genotypic methods. Comparative genotypic analysis showed that the strains within each of these two groups were homogeneous within the group and that each group was unique within the genus Peptoniphilus. The first group is most closely related to Peptoniphilus ivorii and the second group to Peptoniphilus harei. Based on these findings we propose two novel species, Peptoniphilus coxii sp. nov. and Peptoniphilus tyrrelliae sp. nov. The type strains are P. coxii sp. nov., RMA 16757T (= JCM 16892T = CCUG 59622T = ATCC BAA-2106T) and P. tyrrelliae sp. nov., RMA 19911T (= JCM 16893T = CCUG 59621T = ATCC BAA-2105T).  相似文献   

17.
The growth of twelve methanotrophic strains within the genus Methylomonas, including the type strains of Methylomonas methanica and Methylomonas koyamae, was evaluated with 40 different variations of standard diluted nitrate mineral salts medium in 96-well microtiter plates. Unique profiles of growth preference were observed for each strain, showing a strong strain dependency for optimal growth conditions, especially with regards to the preferred concentration and nature of the nitrogen source. Based on the miniaturized screening results, a customized medium was designed for each strain, allowing the improvement of the growth of several strains in a batch setup, either by a reduction of the lag phase or by faster biomass accumulation. As such, the maintenance of fastidious strains could be facilitated while the growth of fast-growing Methylomonas strains could be further improved. Methylomonas sp. R-45378 displayed a 50 % increase in cell dry weight when grown in its customized medium and showed the lowest observed nitrogen and oxygen requirement of all tested strains. We demonstrate that the presented miniaturized approach for medium optimization is a simple tool allowing the quick generation of strain-specific growth preference data that can be applied downstream of an isolation campaign. This approach can also be applied as a first step in the search for strains with biotechnological potential, to facilitate cultivation of fastidious strains or to steer future isolation campaigns.  相似文献   

18.
In this study we analysed three bacterial strains coded L10.10T, A4R1.5 and A4R1.12, isolated in the course of a study of quorum-quenching bacteria occurring in Antarctic soil. The 16S rRNA gene sequence was identical in the three strains and showed 99.7% pairwise similarity with respect to the closest related species Pseudomonas weihenstephanensis WS4993T. Therefore, the three strains were classified within the genus Pseudomonas. Analysis of housekeeping genes (rpoB, rpoD and gyrB) sequences showed similarities of 84-95% with respect to the closest related species of Pseudomonas, confirming its phylogenetic affiliation. The ANI values were less than 86% to the closest related species type strains. The respiratory quinone is Q9. The major fatty acids are C16:0, C16:1 ω7c/ C16:1 ω6c in summed feature 3 and C18:1 ω7c / C18:1 ω6c in summed feature 8. The strains are oxidase- and catalase-positive. Growth occurs at 4–30 °C, and at pH 4.0–10. The DNA G+C content is 58.2–58.3 mol %. The combined genotypic, phenotypic and chemotaxonomic data support the classification of strains L10.10T, A4R1.5 and A4R1.12 into a novel species of Pseudomonas, for which the name P. versuta sp. nov. is proposed. The type strain is L10.10T (LMG 29628T, DSM 101070T).  相似文献   

19.
Social bees harbor a community of gut mutualistic bacteria, among which bifidobacteria occupy an important niche. Recently, four novel species have been isolated from guts of different bumblebees, thus allowing to suppose that a core bifidobacterial population may be present in wild solitary bees. To date there is sparse information about bifidobacteria in solitary bees such as Xylocopa and Osmia spp., this study is therefore focused on the isolation and characterization of bifidobacterial strains from solitary bees, in particular carpenter bee (Xylocopa violacea), builder bee (Osmia cornuta), and red mason bee (Osmia rufa). Among the isolates from Osmia spp. no new species have been detected whereas among Xylocopa isolates four strains (XV2, XV4, XV10, XV16) belonging to putative new species were found. Isolated strains are Gram-positive, lactate- and acetate-producing and possess the fructose-6-phosphate phosphoketolase enzyme. Full genome sequencing and genome annotation were performed for XV2 and XV10. Phylogenetic relationships were determined using partial and complete 16S rRNA sequences and hsp60 restriction analysis that confirmed the belonging of the new strains to Bifidobacterium genus and the relatedness of the strains XV2 and XV10 with XV16 and XV4, respectively. Phenotypic tests were performed for the proposed type strains, reference strains and their closest neighbor in the phylogenetic tree. The results support the proposal of two novel species Bifidobacterium xylocopae sp. nov. whose type strain is XV2 (=DSM 104955T = LMG 30142T), reference strain XV16 and Bifidobacterium aemilianum sp. nov. whose type strain is XV10 (=DSM 104956T = LMG 30143T), reference strain XV4.  相似文献   

20.
Two non-pigmented, motile, Gram-negative marine bacteria designated R9SW1T and A3d10T were isolated from sea water samples collected from Chazhma Bay, Gulf of Peter the Great, Sea of Japan, Pacific Ocean, Russia and St. Kilda Beach, Port Phillip Bay, the Tasman Sea, Pacific Ocean, respectively. Both organisms were found to grow between 4°C and 40°C, between pH 6 to 9, and are moderately halophilic, tolerating up to 20% (w/v) NaCl. Both strains were found to be able to degrade Tween 40 and 80, but only strain R9SW1T was found to be able to degrade starch. The major fatty acids were characteristic for the genus Marinobacter including C16:0, C16:1 ω7c, C18:1 ω9c and C18:1 ω7c. The G+C content of the DNA for strains R9SW1T and A3d10T were determined to be 57.1 mol% and 57.6 mol%, respectively. The two new strains share 97.6% of their 16S rRNA gene sequences, with 82.3% similarity in the average nucleotide identity (ANI), 19.8% similarity in the in silico genome-to-genome distance (GGD), 68.1% similarity in the average amino acid identity (AAI) of all conserved protein-coding genes, and 31 of the Karlin''s genomic signature dissimilarity. A phylogenetic analysis showed that R9SW1T clusters with M. algicola DG893T sharing 99.40%, and A3d10T clusters with M. sediminum R65T sharing 99.53% of 16S rRNA gene sequence similarities. The results of the genomic and polyphasic taxonomic study, including genomic, genetic, phenotypic, chemotaxonomic and phylogenetic analyses based on the 16S rRNA, gyrB and rpoD gene sequence similarities, the analysis of the protein profiles generated using MALDI-TOF mass spectrometry, and DNA-DNA relatedness data, indicated that strains R9SW1T and A3d10T represent two novel species of the genus Marinobacter. The names Marinobacter salarius sp. nov., with the type strain R9SW1T ( =  LMG 27497T  =  JCM 19399T  =  CIP 110588T  =  KMM 7502T) and Marinobacter similis sp. nov., with the type strain A3d10T ( =  JCM 19398T  =  CIP 110589T  =  KMM 7501T), are proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号