首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four strains of lactic acid bacteria isolated from cachaça and alcohol fermentation vats in Brazil were characterised in order to determine their taxonomic position. Phylogenetic analysis revealed that they belong to the genus Oenococcus and should be distinguished from their closest neighbours. The 16S rRNA gene sequence similarity against the type strains of the other two species of the genus was below 94.76 % (Oenococcus kitaharae) and 94.62 % (Oenococcus oeni). The phylogeny based on pheS gene sequences also confirmed the position of the new taxon. DNA–DNA hybridizations based on in silico genome-to-genome comparison, Average Amino Acid Identity, Average Nucleotide Identity and Karlin genomic signature confirmed the novelty of the taxon. Distinctive phenotypic characteristics are the ability to metabolise sucrose but not trehalose. The name Oenococcus alcoholitolerans sp. nov. is proposed for this taxon, with the type strain UFRJ-M7.2.18T ( = CBAS474T = LMG27599T). In addition, we have determined a draft genome sequence of the type strain.  相似文献   

2.
In marine sediments cathodic oxygen reduction at the sediment surface can be coupled to anodic sulfide oxidation in deeper anoxic layers through electrical currents mediated by filamentous, multicellular bacteria of the Desulfobulbaceae family, the so-called cable bacteria. Until now, cable bacteria have only been reported from marine environments. In this study, we demonstrate that cable bacteria also occur in freshwater sediments. In a first step, homogenized sediment collected from the freshwater stream Giber Å, Denmark, was incubated in the laboratory. After 2 weeks, pH signatures and electric fields indicated electron transfer between vertically separated anodic and cathodic half-reactions. Fluorescence in situ hybridization revealed the presence of Desulfobulbaceae filaments. In addition, in situ measurements of oxygen, pH, and electric potential distributions in the waterlogged banks of Giber Å demonstrated the presence of distant electric redox coupling in naturally occurring freshwater sediment. At the same site, filamentous Desulfobulbaceae with cable bacterium morphology were found to be present. Their 16S rRNA gene sequence placed them as a distinct sister group to the known marine cable bacteria, with the genus Desulfobulbus as the closest cultured lineage. The results of the present study indicate that electric currents mediated by cable bacteria could be important for the biogeochemistry in many more environments than anticipated thus far and suggest a common evolutionary origin of the cable phenotype within Desulfobulbaceae with subsequent diversification into a freshwater and a marine lineage.  相似文献   

3.
4.
Algal production of dissolved organic carbon and the regeneration of nutrients from dissolved organic carbon by bacteria are important aspects of nutrient cycling in the sea, especially when inorganic nitrogen is limiting. Dissolved free amino acids are a major carbon source for bacteria and can be used by phytoplankton as a nitrogen source. We examined the interactions between the phytoplankton species Emiliania huxleyi and Thalassiosira pseudonana and a bacterial isolate from the North Sea. The organisms were cultured with eight different amino acids and a protein as the only nitrogen sources, in pure and mixed cultures. Of the two algae, only E. huxleyi was able to grow on amino acids. The bacterium MD1 used all substrates supplied, except serine. During growth of MD1 in pure culture, ammonium accumulated in the medium. Contrary to the expectation, the percentage of ammonium regenerated from the amino acids taken up showed no correlation with the substrate C/N ratio. In mixed culture, the algae grew well in those cultures in which the bacteria grew well. The bacterial yields (cell number) were also higher in mixed culture than in pure culture. In the cultures of MD1 and T. pseudonana, the increase in bacterial yield (number of cells) over that of the pure culture was comparable to the bacterial yield in mixed culture on a mineral medium. This result suggests that T. pseudonana excreted a more-or-less-constant amount of carbon. The bacterial yields in mixed cultures with E. huxleyi showed a smaller and less consistent difference than those of the pure cultures of MD1. It is possible that the ability of E. huxleyi to use amino acids influenced the bacterial yield. The results suggest that interactions between algae and bacteria influence the regeneration of nitrogen from organic carbon and that this influence differs from one species to another.  相似文献   

5.
Pseudomonas fluorescens Pt14 is a non-pathogenic and acidophilic bacterium isolated from acidic soil (pH 4.65). Genome sequencing of strain Pt14 was performed using Single Molecule Real Time (SMRT) sequencing to get insights into unique existence of this strain in acidic environment. Complete genome sequence of this strain revealed a chromosome of 5,841,722 bp having 5354 CDSs and 88 RNAs. Phylogenomic reconstruction based on 16S rRNA gene, Average Nucleotide Identity (ANI) values and marker proteins revealed that strain Pt14 shared a common clade with P. fluorescens strain A506 and strain SS101. ANI value of strain Pt14 in relation to strain A506 was found 99.23% demonstrating a very close sub-species association at genome level. Further, orthology determination among these three phylogenetic neighbors revealed 4726 core proteins. Functional analysis elucidated significantly higher abundance of sulphur metabolism (>1×) which could be one of the reasons for the survival of strain Pt14 under acidic conditions (pH 4.65). Acidophilic bacteria have capability to oxidize sulphur into sulphuric acid which in turn can make the soil acidic and genome-wide analysis of P. fluorescens Pt14 demonstrated that this strain contributes towards making the soil acidic.  相似文献   

6.
Methanogenic enrichment cultures with isobutyrate as sole source of carbon and energy were inoculated with sediment and sludge samples from freshwater and marine origin. Over more than 20 transfers, these cultures fermented 2 mol isobutyrate with 1 mol CO2 via an intermediate formation of n-butyrate to 4 mol acetate and 1 mol CH4. The primary isobutyrate-fermenting bacteria could not be purified. From one of the marine enrichment cultures, a sulfate-reducing bacterium was isolated which oxidized isobutyrate with sulfate completely to CO2. Based on its physiological and morphological properties, this strain was assigned to the known species Desulfococcus multivorans. It also oxidized many other fatty acids without significant release of short-chain intermedeates. The enzymes involved in isobutyrate degradation by this bacterium were assayed in cell-free extracts. The results indicate that isobutyrate is activated to its CoA derivative and oxidized via methylmalonate semialdehyde to propionyl-CoA. Propionyl-CoA is further converted via the methylmalonyl-CoA pathway to acetyl-CoA which is finally cleaved by the CO-dehydrogenase system. It is evident that this is not the pathway used by the fermenting bacteria prevailing in the methanogenic enrichment cultures. There results are discussed on the basis of energetical considerations.  相似文献   

7.
Recently, long filamentous bacteria, belonging to the family Desulfobulbaceae, were shown to induce electrical currents over long distances in the surface layer of marine sediments. These “cable bacteria” are capable of harvesting electrons from free sulfide in deeper sediment horizons and transferring these electrons along their longitudinal axes to oxygen present near the sediment-water interface. In the present work, we investigated the relationship between cable bacteria and a photosynthetic algal biofilm. In a first experiment, we investigated sediment that hosted both cable bacteria and a photosynthetic biofilm and tested the effect of an imposed diel light-dark cycle by continuously monitoring sulfide at depth. Changes in photosynthesis at the sediment surface had an immediate and repeatable effect on sulfide concentrations at depth, indicating that cable bacteria can rapidly transmit a geochemical effect to centimeters of depth in response to changing conditions at the sediment surface. We also observed a secondary response of the free sulfide at depth manifest on the time scale of hours, suggesting that cable bacteria adjust to a moving oxygen front with a regulatory or a behavioral response, such as motility. Finally, we show that on the time scale of days, the presence of an oxygenic biofilm results in a deeper and more acidic suboxic zone, indicating that a greater oxygen supply can enable cable bacteria to harvest a greater quantity of electrons from marine sediments. Rapid acclimation strategies and highly efficient electron harvesting are likely key advantages of cable bacteria, enabling their success in high sulfide generating coastal sediments.  相似文献   

8.
Cable bacteria (CB) are Desulfobulbaceae that couple sulphide oxidation to oxygen reduction over centimetre distances by mediating electric currents. Recently, it was suggested that the CB clade is composed of two genera, Ca. Electronema and Ca. Electrothrix, with distinct freshwater and marine habitats respectively. However, only a few studies have reported CB from freshwater sediment, making this distinction uncertain. Here, we report novel data to show that salinity is a controlling factor for the diversity and the species composition within CB populations. CB sampled from a freshwater site (salinity 0.3) grouped into Ca. Electronema and could not grow under brackish conditions (salinity 21), whereas CB from a brackish site (salinity 21) grouped into Ca. Electrothrix and decreased by 93% in activity under freshwater conditions. On a regional scale (Baltic Sea), salinity significantly influenced species richness and composition. However, other environmental factors, such as temperature and quantity and quality of organic matter were also important to explain the observed variation. A global survey of 16S rRNA gene amplicon sequencing revealed that the two genera did not co-occur likely because of competitive exclusion and identified a possible third genus.  相似文献   

9.
From the silty sediments of the Khadyn soda lake (Tuva), a binary sulfidogenic bacterial association capable of syntrophic acetate oxidation at pH 10.0 was isolated. An obligately syntrophic, gram-positive, spore-forming alkaliphilic rod-shaped bacterium performs acetate oxidation in a syntrophic association with a hydrogenotrophic, alkaliphilic sulfate-reducing bacterium; the latter organism was previously isolated and characterized as the new species Desulfonatronum cooperativum. Other sulfate-reducing bacteria of the genera Desulfonatronum and Desulfonatronovibrio can also act as the hydrogenotrophic partner. Apart from acetate, the syntrophic culture can oxidize ethanol, propanol, isopropanol, serine, fructose, and isobutyric acid. Selective amplification of 16S rRNA gene fragments of the acetate-utilizing syntrophic component of the binary culture was performed; it was found to cluster with clones of uncultured gram-positive bacteria within the family Syntrophomonadaceae. The acetate-oxidizing bacterium is thus the first representative of this cluster obtained in a laboratory culture. Based on its phylogenetic position, the new acetate-oxidizing syntrophic bacterium is proposed in the Candidatus status for a new genus and species: “Candidatus Contubernalis alkalaceticum.”  相似文献   

10.
The phylum Planctomycetes is metabolically unique group of bacteria divided in two classes Planctomycetia and Phycisphaerae. Anaerobic ammonia-oxidizing (anammox) bacteria are the uncultured representatives of the phylum Planctomycetes. Anammox bacterial genera are placed in the family Candidatus (Ca.) Brocadiaceae of the order Ca. Brocadiales, assigned to the class Planctomycetia. Phylogenetic analysis, showed that the anammox bacteria and Ca. Uabimicrobium form a divergent clade from the rest of the cultured representatives of the phylum Planctomycetes. The phylogenetic study, pairwise distance and Average Amino acid Identity (AAI) showed that anammox bacteria don’t belong to the classes Planctomycetia and Phycisphaerae. Anammox bacteria and Ca. Uabimicrobium form a deep-branching third clade in the phylogenetic analysis indicating that it is the most ancient third class within the phylum Planctomycetes. Phenotypic characters also separate anammox bacteria from classes Planctomycetia and Phycisphaerae. Therefore, based on phenotypic, phylogenetic, pairwise distance, AAI and phylogenomic analysis we propose a novel class Ca. Brocadiia to accommodate the order Ca. Brocadiales of anammox bacteria except Ca. Anammoximicrobium. Genera Ca. Jettenia, Ca. Anammoxoglobus, Ca. Kuenenia and Ca. Brocadia show their phylogenetic affiliation to the family Ca. Brocadiaceae. However, Ca. Scalindua showed a distant relationship with the family Ca. Brocadiaceae. Therefore, we suggest the exclusion of the genus Ca. Scalindua from the family Ca. Brocadiaceae; and propose its inclusion under a novel family with a provisional name as Ca. Scalinduaceae fam. nov. Similarly, Ca. Uabimicrobium amporphum showed distinct phylogenetic affiliation, therefore we propose a novel class Ca. Uabimicrobiia classis nov. to accommodate the genus Ca. Uabimicrobium.  相似文献   

11.
Larvae of the mayfly (Drunella grandis [Eaton]) from Diamond Fork Creek, Utah, were covered with a heavy growth of the sulfide-oxidizing bacterium Thiothrix. The bacterium did not seem to harm the mayfly, but the Thiothrix trichomes were parasitized by three morphologically distinct bacteria, two of which were cytoplasmic and one of which was probably periplasmic. At least two of the parasites destroyed the cytoplasmic contents of the Thiothrix sp., thus killing the host cell. Attempts to obtain the parasites in pure culture were unsuccessful.  相似文献   

12.
The proposal to restructure the genus Arcobacter into six distinct genera was critically examined using: comparative analyses of up to 80 Epsilonproteobacterial genome sequences (including 26 arcobacters); phylogenetic analyses of three housekeeping genes and also 342 core genes; and phenotypic criteria. Genome sequences were analysed with tools to calculate Percentage of Conserved Proteins, Average Amino-acid Identity, BLAST-based Average Nucleotide Identity, in silico DNA–DNA hybridisation values, genome-wide Average Nucleotide Identity, Alignment Fractions and G + C percentages. Genome analyses revealed the genus Arcobacter sensu lato to be relatively homogenous, and phylogenetic analyses clearly distinguished the group from other Epsilonproteobacteria. Genomic distinction of the genera proposed by Pérez-Cataluña et al. [2018] was not supported by any of the measures used and a subsequent risk of strain misidentification clearly identified. Similarly, phenotypic analyses supported the delineation of Arcobacter sensu lato but did not justify the position of the proposed novel genera. The present polyphasic taxonomic study strongly supports the continuance of the classification of “aerotolerant campylobacters” as Arcobacter and refutes the proposed genus-level subdivision of Pérez-Cataluña et al. [2018].  相似文献   

13.
In this study we evaluated the ability of lactoferrin, the most abundant antimicrobial protein in airway secretions, to bind the surface structures of a Burkholderia strain cystic fibrosis-isolated. Burkholderia cenocepacia is a gram-negative bacterium involved as respiratory pathogen in cystic fibrosis patient infections. This bacterium possesses filamentous structures, named cable pili that have been proposed as virulence factors because of their ability to bind to respiratory epithelia and mucin. Previously, we demonstrated that bovine lactoferrin was able to influence the efficiency of invasion of different iron-regulated morphological forms of B. cenocepacia. Bovine lactoferrin showed to efficiently inhibit invasion of alveolar epithelial cells by free-living bacteria or iron-induced aggregates or biofilm. Results of the present study demonstrate that bovine lactoferrin is also able to specifically bind to B. cenocepacia cells and show that cable pili are involved in this interaction. The attachment of bovine lactoferrin to pili led to a reduced binding of bacterial cells to mucin. Since cable pili are implicated in mediating the bacterial interactions with mucin and epithelial cells, lactoferrin binding to these structures could play an important role in neutralizing bacterial infection in cystic fibrosis patients.  相似文献   

14.
Nonylphenol (NP) has been a contaminant of great environmental concern due to its ubiquity, toxicity and endocrine activity. Biodegradation is an ideal way to clean up NP pollution. In this study, two NP degraders were isolated from river sediment. Their ability to degrade NP was tested in both liquid culture and sediment microcosm. Phylogenetic analysis indicated that one isolate belonged to genus Rhizobium, while another was a Sphingobium species. The Rhizobium strain contained ALK gene, while the Sphingobium strain harbored ALK and C23O genes. Both of the two strains showed strong NP degradation ability in liquid culture. However, only the Rhizobium strain demonstrated a potential of bioremediating NP-contaminated sediment. This study can provide some new insights towards NP biodegradation and bioremediation.  相似文献   

15.
Strain 4SM10T, an aerobic marine, Gram-negative, heterotrophic and non pigmented bacterium isolated from seawater from Vinaroz in Castellón, Spain, was characterized using a polyphasic approach. Analysis of the 16S rRNA gene sequence placed the strain within the Roseobacter clade in the family Rhodobacteraceae. Phylogenetic analyses also showed that strain 4SM10T forms a stable clade with species of the genus Roseovarius, being related to Roseovarius nubinhibens ISMT and Roseovarius aestuarii SMK-122T at 97.5 and 97.4 % 16S rRNA sequence similarity, respectively. Average Nucleotide Identity (ANI) values, determined as a measure of overall genomic resemblance, confirmed that strain 4SM10T does not belong to the same species as R. aestuarii CECT 7745T and Roseovarius nubinhibens CECT 7750T displaying ANI values well below the 95 % boundary for genomic species. Strain 4SM10T requires Na+ plus a divalent cation (either Mg2+ or Ca2+) to grow, reduces nitrate to nitrite and uses a large number of amino acids and organic acids (but no carbohydrates) as sole carbon sources. Enzymatic activities displayed in API ZYM tests are alkaline phosphatase, leucine arylamidase and acid phosphatase. The major cellular fatty acids were identified as C18:1 ω7c and/or C18:1 ω6c (67.1 %). The DNA G+C content was determined to be 54.27 mol%. Based on the genotypic and phenotypic data obtained, the name Roseovarius albus sp. nov. is proposed for this novel taxon, with the type strain 4SM10T (=CECT 7450T = KCTC 22653T).  相似文献   

16.
A natural antibacterial-substance-producing gram-positive bacterium was isolated from terasi shrimp paste, a popular fermented product in Indonesia. This strain, a spore-forming and strictly aerobic bacterium, was identified as Virgibacillus salexigens by 16S rRNA gene sequence analysis. The antibacterial substance purified from the precipitated product in the culture supernatant of the strain using ammonium sulfate showed a broad inhibition spectrum against gram-positive bacteria, including a typical foodborne bacterium, namely, Listeria monocytogenes. The antibacterial activity of the substance was inactivated by treatments with various proteolytic enzymes. It was stable after heating or pH treatment, and approximately 60 % of the initial activity remained even after heating at 121 °C for 15 min. In addition, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis indicated that its monoisotopic mass weight was 5318.4 Da (M+H)+. On the basis of the results obtained by the automated Edman degradation technique and MALDI-TOF MS analysis, the substance can be classified as a member of Class IId bacteriocins, but it could not be identified as any of the previously purified substances except for the putative bacteriocin predicted from the draft genome sequence data of gram-positive bacteria such as Virgibacillus and Bacillus strains.  相似文献   

17.
The suspected carcinogen 1,2-dichloroethane (1,2-DCA) is the most abundant chlorinated C2 groundwater pollutant on earth. However, a reductive in situ detoxification technology for this compound does not exist. Although anaerobic dehalorespiring bacteria are known to catalyze several dechlorination steps in the reductive-degradation pathway of chlorinated ethenes and ethanes, no appropriate isolates that selectively and metabolically convert them into completely dechlorinated end products in defined growth media have been reported. Here we report on the isolation of Desulfitobacterium dichloroeliminans strain DCA1, a nutritionally defined anaerobic dehalorespiring bacterium that selectively converts 1,2-dichloroethane and all possible vicinal dichloropropanes and -butanes into completely dechlorinated end products. Menaquinone was identified as an essential cofactor for growth of strain DCA1 in pure culture. Strain DCA1 converts chiral chlorosubstrates, revealing the presence of a stereoselective dehalogenase that exclusively catalyzes an energy-conserving anti mechanistic dichloroelimination. Unlike any known dehalorespiring isolate, strain DCA1 does not carry out reductive hydrogenolysis reactions but rather exclusively dichloroeliminates its substrates. This unique dehalorespiratory biochemistry has shown promising application possibilities for bioremediation purposes and fine-chemical synthesis.  相似文献   

18.
Specific detection of a particular bacterium by immunofluorescence was combined with estimation of its metabolic activity by autoradiography. The nitrifying bacteria Nitrobacter agilis and N. winogradskyi were used as a model system. Nitrobacter were incubated with NaH14CO3 and 14CO2 prior to study. The same preparations made for autoradiograms were stained with fluorescent antibodies specific for the Nitrobacter species. Examination by epifluorescence and transmitted dark-field microscopy revealed Nitrobacter cells with and without associated silver grains. Direct detection and simultaneous evaluation of metabolic activity of Nitrobacter was demonstrated in pure cultures, in a simple mixed culture, and in a natural soil.  相似文献   

19.
β-Aminoglutaric acid, a nonprotein amino acid isomer of glutamic acid, was found in the free amino acid pool of a marine bacterium, Alteromonas luteoviolacea. It was also found in a mixed culture of fermenting bacteria enriched from an anoxic marine sediment.  相似文献   

20.
In certain species of fish, such as rainbow trout, infection by the Firmicutes Lactococcus garvieae is problematic. This organism is the causative agent of lactococcosis disease in fish, and it is also considered a potential zoonotic bacterium, since it can cause several opportunistic infections in humans. In this study, L. garvieae strain TRF1 was grown and isolated in pure culture from the fecal material of a Timber Rattlesnake (Crotalus horridus), living in the wild. The presence/absence of several putative virulence factors was identified using staining, PCR amplification, and the construction of a draft genome. Strain TRF1 shared several putative virulence factors with strain Lg2, a known fish pathogen. However, the capsule gene cluster, found in strain Lg2, was not found in strain TRF1. Since this gene cluster is absent in several non-pathogenic strains of L. garvieae, it suggests strain TRF1 may not be pathogenic. However, this hypothesis will have to be tested in an animal model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号