首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Autophagy is essential for nutrient recycling and intracellular housekeeping in plants by removing unwanted cytoplasmic constituents, aggregated polypeptides, and damaged organelles. The autophagy-related (ATG)1-ATG13 kinase complex is an upstream regulator that integrates metabolic and environmental cues into a coherent autophagic response directed by other ATG components. Our recent studies with Arabidopsis thaliana revealed that ATG11, an accessory protein of the ATG1-ATG13 complex, acts as a scaffold that connects the complex to autophagic membranes. We showed that ATG11 encourages proper behavior of the ATG1-ATG13 complex and faithful delivery of autophagic vesicles to the vacuole, likely through its interaction with ATG8. In addition, we demonstrated that Arabidopsis mitochondria are degraded during senescence via an autophagic route that requires ATG11 and other ATG components. Together, ATG11 appears to be an important modulator of the ATG1-ATG13 complex and a multifunctional scaffold required for bulk autophagy and the selective clearance of mitochondria.  相似文献   

2.
《Autophagy》2013,9(8):1466-1467
Autophagy is essential for nutrient recycling and intracellular housekeeping in plants by removing unwanted cytoplasmic constituents, aggregated polypeptides, and damaged organelles. The autophagy-related (ATG)1-ATG13 kinase complex is an upstream regulator that integrates metabolic and environmental cues into a coherent autophagic response directed by other ATG components. Our recent studies with Arabidopsis thaliana revealed that ATG11, an accessory protein of the ATG1-ATG13 complex, acts as a scaffold that connects the complex to autophagic membranes. We showed that ATG11 encourages proper behavior of the ATG1-ATG13 complex and faithful delivery of autophagic vesicles to the vacuole, likely through its interaction with ATG8. In addition, we demonstrated that Arabidopsis mitochondria are degraded during senescence via an autophagic route that requires ATG11 and other ATG components. Together, ATG11 appears to be an important modulator of the ATG1-ATG13 complex and a multifunctional scaffold required for bulk autophagy and the selective clearance of mitochondria.  相似文献   

3.
Autophagy is an intracellular recycling route in eukaryotes whereby organelles and cytoplasm are sequestered in vesicles, which are subsequently delivered to the vacuole for breakdown. The process is induced by various nutrient-responsive signaling cascades converging on the Autophagy-Related1 (ATG1)/ATG13 kinase complex. Here, we describe the ATG1/13 complex in Arabidopsis thaliana and show that it is both a regulator and a target of autophagy. Plants missing ATG13 are hypersensitive to nutrient limitations and senesce prematurely similar to mutants lacking other components of the ATG system. Synthesis of the ATG12-ATG5 and ATG8-phosphatidylethanolamine adducts, which are essential for autophagy, still occurs in ATG13-deficient plants, but the biogenesis of ATG8-decorated autophagic bodies does not, indicating that the complex regulates downstream events required for autophagosome enclosure and/or vacuolar delivery. Surprisingly, levels of the ATG1a and ATG13a phosphoproteins drop dramatically during nutrient starvation and rise again upon nutrient addition. This turnover is abrogated by inhibition of the ATG system, indicating that the ATG1/13 complex becomes a target of autophagy. Consistent with this mechanism, ATG1a is delivered to the vacuole with ATG8-decorated autophagic bodies. Given its responsiveness to nutrient demands, the turnover of the ATG1/13 kinase likely provides a dynamic mechanism to tightly connect autophagy to a plant's nutritional status.  相似文献   

4.
Dynamic targeting of the ULK1 complex to the ER is crucial for initiating autophagosome formation and for subsequent formation of ER–isolation membrane (IM; autophagosomal precursor) contact during IM expansion. Little is known about how the ULK1 complex, which comprises FIP200, ULK1, ATG13, and ATG101 and does not exist as a constitutively coassembled complex, is recruited and stabilized on the ER. Here, we demonstrate that the ER-localized transmembrane proteins Atlastin 2 and 3 (ATL2/3) contribute to recruitment and stabilization of ULK1 and ATG101 at the FIP200-ATG13–specified autophagosome formation sites on the ER. In ATL2/3 KO cells, formation of FIP200 and ATG13 puncta is unaffected, while targeting of ULK1 and ATG101 is severely impaired. Consequently, IM initiation is compromised and slowed. ATL2/3 directly interact with ULK1 and ATG13 and facilitate the ATG13-mediated recruitment/stabilization of ULK1 and ATG101. ATL2/3 also participate in forming ER–IM tethering complexes. Our study provides insights into the dynamic assembly of the ULK1 complex on the ER for autophagosome formation.  相似文献   

5.
Selective incorporation of cargo proteins into the forming vesicle is an important aspect of protein targeting via vesicular trafficking. Based on the current paradigm of cargo selection in vesicular transport, proteins to be sorted to other organelles are condensed at the vesicle budding site in the donor organelle, a process that is mediated by the interaction between cargo and coat proteins, which constitute part of the vesicle forming machinery. The cytoplasm to vacuole targeting (Cvt) pathway is an unconventional vesicular trafficking pathway in yeast, which is topologically and mechanistically related to autophagy. Aminopeptidase I (Ape1) is the major cargo protein of the Cvt pathway. Unlike the situation in conventional vesicular transport, precursor Ape1, along with its receptor Atg19/Cvt19, is packed into a huge complex, termed a Cvt complex, independent of the vesicle formation machinery. The Cvt complex is subsequently incorporated into the forming Cvt vesicle. The deletion of APE1 or ATG19 compromised the organization of the pre-autophagosomal structure (PAS), a site that is thought to play a critical role in Cvt vesicle/autophagosome formation. The proper organization of the PAS also required Atg11/Cvt9, a protein that localizes the cargo complex at the PAS. Accordingly, the deletion of APE1, ATG19, or ATG11 affected the formation of Cvt vesicles. These observations suggest a unique concept; in the case of the Cvt pathway, the cargo proteins facilitate receptor recruitment and vesicle formation rather than the situation with most vesicular transport, in which the forming vesicle concentrates the cargo proteins.  相似文献   

6.
Removal of ubiquitinated targets by autophagosomes can be mediated by receptor molecules, like SQSTM1, in a mechanism referred to as selective autophagy. While cytoplasmic protein aggregates, mitochondria, and bacteria are the best-known targets of selective autophagy, their role in the turnover of membrane receptors is scarce. We here showed that fasting-induced wasting of skeletal muscle involves remodeling of the neuromuscular junction (NMJ) by increasing the turnover of muscle-type CHRN (cholinergic receptor, nicotinic/nicotinic acetylcholine receptor) in a TRIM63-dependent manner. Notably, this process implied enhanced production of endo/lysosomal carriers of CHRN, which also contained the membrane remodeler SH3GLB1, the E3 ubiquitin ligase, TRIM63, and the selective autophagy receptor SQSTM1. Furthermore, these vesicles were surrounded by the autophagic marker MAP1LC3A in an ATG7-dependent fashion, and some of them were also positive for the lysosomal marker, LAMP1. While the amount of vesicles containing endocytosed CHRN strongly augmented in the absence of ATG7 as well as upon denervation as a model for long-term atrophy, denervation-induced increase in autophagic CHRN vesicles was completely blunted in the absence of TRIM63. On a similar note, in trim63−/− mice denervation-induced upregulation of SQSTM1 and LC3-II was abolished and endogenous SQSTM1 did not colocalize with CHRN vesicles as it did in the wild type. SQSTM1 and LC3-II coprecipitated with surface-labeled/endocytosed CHRN and SQSTM1 overexpression significantly induced CHRN vesicle formation. Taken together, our data suggested that selective autophagy regulates the basal and atrophy-induced turnover of the pentameric transmembrane protein, CHRN, and that TRIM63, together with SH3GLB1 and SQSTM1 regulate this process.  相似文献   

7.
Presynaptic nerve terminals release neurotransmitters by synaptic vesicle exocytosis. Membrane fusion mediating synaptic exocytosis and other intracellular membrane traffic is affected by a universal machinery that includes SNARE (for “soluble NSF-attachment protein receptor”) and SM (for “Sec1/Munc18-like”) proteins. During fusion, vesicular and target SNARE proteins assemble into an α-helical trans-SNARE complex that forces the two membranes tightly together, and SM proteins likely wrap around assembling trans-SNARE complexes to catalyze membrane fusion. After fusion, SNARE complexes are dissociated by the ATPase NSF (for “N-ethylmaleimide sensitive factor”). Fusion-competent conformations of SNARE proteins are maintained by chaperone complexes composed of CSPα, Hsc70, and SGT, and by nonenzymatically acting synuclein chaperones; dysfunction of these chaperones results in neurodegeneration. The synaptic membrane-fusion machinery is controlled by synaptotagmin, and additionally regulated by a presynaptic protein matrix (the “active zone”) that includes Munc13 and RIM proteins as central components.Synaptic vesicles are uniform organelles of ∼40 nm diameter that constitute the central organelle for neurotransmitter release. Each presynaptic nerve terminal contains hundreds of synaptic vesicles that are filled with neurotransmitters. When an action potential depolarizes the presynaptic plasma membrane, Ca2+-channels open, and Ca2+ flows into the nerve terminal to trigger the exocytosis of synaptic vesicles, thereby releasing their neurotransmitters into the synaptic cleft (Fig. 1). Ca2+ triggers exocytosis by binding to synaptotagmin; after exocytosis, vesicles are re-endocytosed, recycled, and refilled with neurotransmitters. Recycling can occur by multiple parallel pathways, either by fast recycling via local reuse of vesicles (“kiss-and-run” and “kiss-and-stay”), or by slower recycling via an endosomal intermediate (Fig. 1).Open in a separate windowFigure 1.The synaptic vesicle cycle. A presynaptic nerve terminal is depicted schematically as it contacts a postsynaptic neuron. The synaptic vesicle cycle consists of exocytosis (red arrows) followed by endocytosis and recycling (yellow arrows). Synaptic vesicles (green circles) are filled with neurotransmitters (NT; red dots) by active transport (neurotransmitter uptake) fueled by an electrochemical gradient established by a proton pump that acidifies the vesicle interior (vesicle acidification; green background). In preparation to synaptic exocytosis, synaptic vesicles are docked at the active zone, and primed by an ATP-dependent process that renders the vesicles competent to respond to a Ca2+-signal. When an action potential depolarizes the presynaptic membrane, Ca2+-channels open, causing a local increase in intracellular Ca2+ at the active zone that triggers completion of the fusion reaction. Released neurotransmitters then bind to receptors associated with the postsynaptic density (PSD). After fusion pore opening, synaptic vesicles probably recycle via three alternative pathways: local refilling with neurotransmitters without undocking (“kiss-and-stay”), local recycling with undocking (“kiss-and-run”), and full recycling of vesicles with passage through an endosomal intermediate. (Adapted from Südhof 2004.)Due to their small size, synaptic vesicles contain a limited complement of proteins that have been described in detail (Südhof 2004; Takamori et al. 2006). Although the functions of several vesicle components remain to be identified, most vesicle components participate in one of three processes: neurotransmitter uptake and storage, vesicle exocytosis, and vesicle endocytosis and recycling. In addition, it is likely that at least some vesicle proteins are involved in the biogenesis of synaptic vesicles and the maintenance of their exquisite uniformity and stability, but little is known about how vesicles are made, and what determines their size.  相似文献   

8.
Autophagy is a lysosome-dependent degradation system conserved among eukaryotes. The mammalian Atg1 homologues, Unc-51 like kinase (ULK) 1 and 2, are multifunctional proteins with roles in autophagy, neurite outgrowth, and vesicle transport. The mammalian ULK complex involved in autophagy consists of ULK1, ULK2, ATG13, FIP200, and ATG101. We have used pulldown and peptide array overlay assays to study interactions between the ULK complex and six different ATG8 family proteins. Strikingly, in addition to ULK1 and ULK2, ATG13 and FIP200 interacted with human ATG8 proteins, all with strong preference for the GABARAP subfamily. Similarly, yeast and Drosophila Atg1 interacted with their respective Atg8 proteins, demonstrating the evolutionary conservation of the interaction. Use of peptide arrays allowed precise mapping of the functional LIR motifs, and two-dimensional scans of the ULK1 and ATG13 LIR motifs revealed which substitutions that were tolerated. This information, combined with an analysis of known LIR motifs, provides us with a clearer picture of sequence requirements for LIR motifs. In addition to the known requirements of the aromatic and hydrophobic residues of the core motif, we found the interactions to depend strongly on acidic residues surrounding the central core LIR motifs. A preference for either a hydrophobic residue or an acidic residue following the aromatic residue in the LIR motif is also evident. Importantly, the LIR motif is required for starvation-induced association of ULK1 with autophagosomes. Our data suggest that ATG8 proteins act as scaffolds for assembly of the ULK complex at the phagophore.  相似文献   

9.
Poliovirus (PV), like many positive-strand RNA viruses, subverts the macroautophagy/autophagy pathway to promote its own replication. Here, we investigate whether the virus uses the canonical autophagic signaling complex, consisting of the ULK1/2 kinases, ATG13, RB1CC1, and ATG101, to activate autophagy. We find that the virus sends autophagic signals independent of the ULK1 complex, and that the members of the autophagic complex are not required for normal levels of viral replication. We also show that the SQSTM1/p62 receptor protein is not degraded in a conventional manner during infection, but is likely cleaved in a manner similar to that shown for coxsackievirus B3. This means that SQSTM1, normally used to monitor autophagic degradation, cannot be used to accurately monitor degradation during poliovirus infection. In fact, autophagic degradation may be affected by the loss of SQSTM1 at the same time as autophagic signals are being sent. Finally, we demonstrate that ULK1 and ULK2 protein levels are greatly reduced during PV infection, and ATG13, RB1CC1, and ATG101 protein levels are reduced as well. Surprisingly, autophagic signaling appears to increase as ULK1 levels decrease. Overexpression of wild-type or dominant-negative ULK1 constructs does not affect virus replication, indicating that ULK1 degradation may be a side effect of the ULK1-independent signaling mechanism used by PV, inducing complex instability. This demonstration of ULK1-independent autophagic signaling is novel and leads to a model by which the virus is signaling to generate autophagosomes downstream of ULK1, while at the same time, cleaving cargo receptors, which may affect cargo loading and autophagic degradative flux. Our data suggest that PV has a finely-tuned relationship with the autophagic machinery, generating autophagosomes without using the primary autophagy signaling pathway.

Abbreviations: ACTB - actin beta; ATG13 - autophagy related 13; ATG14 - autophagy related 14; ATG101 - autophagy related 101; BECN1 - beclin 1; CVB3 - coxsackievirus B3; DMV - double-membraned vesicles; EM - electron microscopy; EMCV - encephalomyocarditis virus; EV-71 - enterovirus 71; FMDV - foot and mouth disease virus; GFP - green fluorescent protein; MAP1LC3B/LC3B - microtubule associated protein 1 light chain 3 beta; MOI - multiplicity of infection; MTOR - mechanistic target of rapamycin kinase; PIK3C3 - phosphatidylinositol 3-kinase catalytic subunit type 3; PRKAA2 - protein kinase AMP-activated catalytic subunit alpha 2; PSMG1 - proteasome assembly chaperone 1; PSMG2 - proteasome assembly chaperone 2PV - poliovirus; RB1CC1 - RB1 inducible coiled-coil 1; SQSTM1 - sequestosome 1; ULK1 - unc-51 like autophagy activating kinase 1; ULK2 - unc-51 like autophagy activating kinase 2; WIPI1 - WD repeat domain, phosphoinositide interacting 1  相似文献   


10.
The network of protein–protein interactions of the Dictyostelium discoideum autophagy pathway was investigated by yeast two-hybrid screening of the conserved autophagic proteins Atg1 and Atg8. These analyses confirmed expected interactions described in other organisms and also identified novel interactors that highlight the complexity of autophagy regulation. The Atg1 kinase complex, an essential regulator of autophagy, was investigated in detail here. The composition of the Atg1 complex in D. discoideum is more similar to mammalian cells than to Saccharomyces cerevisiae as, besides Atg13, it contains Atg101, a protein not conserved in this yeast. We found that Atg101 interacts with Atg13 and genetic disruption of these proteins in Dictyostelium leads to an early block in autophagy, although the severity of the developmental phenotype and the degree of autophagic block is higher in Atg13-deficient cells. We have also identified a protein containing zinc-finger B-box and FNIP motifs that interacts with Atg101. Disruption of this protein increases autophagic flux, suggesting that it functions as a negative regulator of Atg101. We also describe the interaction of Atg1 kinase with the pentose phosphate pathway enzyme transketolase (TKT). We found changes in the activity of endogenous TKT activity in strains lacking or overexpressing Atg1, suggesting the presence of an unsuspected regulatory pathway between autophagy and the pentose phosphate pathway in Dictyostelium that seems to be conserved in mammalian cells.  相似文献   

11.
Q Jiang  L Zhao  J Dai  Q Wu 《PloS one》2012,7(7):e41826

Background

Microalgae, with the ability to mitigate CO2 emission and produce carbohydrates and lipids, are considered one of the most promising resources for producing bioenergy. Recently, we discovered that autophagy plays a critical role in the metabolism of photosynthetic system and lipids production. So far, more than 30-autophagy related (ATG) genes in all subtypes of autophagy have been identified. However, compared with yeast and mammals, in silico and experimental research of autophagy pathways in microalgae remained limited and fragmentary.

Principal Findings

In this article, we performed a genome-wide analysis of ATG genes in 7 microalgae species and explored their distributions, domain structures and evolution. Eighteen “core autophagy machinery” proteins, four mammalian-specific ATG proteins and more than 30 additional proteins (including “receptor-adaptor” complexes) in all subtypes of autophagy were analyzed. Data revealed that receptor proteins in cytoplasm-to-vacuole targeting and mitophagy seem to be absent in microalgae. However, most of the “core autophagy machinery” and mammalian-specific proteins are conserved among microalgae, except for the ATG9-cycling system in Chlamydomonas reinhardtii and the second ubiquitin-like protein conjugation complex in several algal species. The catalytic and binding residues in ATG3, ATG5, ATG7, ATG8, ATG10 and ATG12 are also conserved and the phylogenetic tree of ATG8 coincides well with the phylogenies. Chlorella contains the entire set of the core autophagy machinery. In addition, RT-PCR analysis verified that all crucial ATG genes tested are expressed during autophagy in both Chlorella and Chlamydomonas reinhardtii. Finally, we discovered that addition of 3-Methyladenine (a PI3K specific inhibitor) could suppress the formation of autophagic vacuoles in Chlorella.

Conclusions

Taken together, Chlorella may represent a potential model organism to investigate autophagy pathways in photosynthetic eukaryotes. The study will not only promote understanding of the general features of autophagic pathways, but also benefit the production of Chlorella-derived biofuel with future commercial applications.  相似文献   

12.
13.
Autophagy describes an intracellular process responsible for the lysosome-dependent degradation of cytosolic components. The ULK1/2 complex comprising the kinase ULK1/2 and the accessory proteins ATG13, RB1CC1, and ATG101 has been identified as a central player in the autophagy network, and it represents the main entry point for autophagy-regulating kinases such as MTOR and AMPK. It is generally accepted that the ULK1 complex is constitutively assembled independent of nutrient supply. Here we report the characterization of the ATG13 region required for the binding of ULK1/2. This binding site is established by an extremely short peptide motif at the C terminus of ATG13. This motif is mandatory for the recruitment of ULK1 into the autophagy-initiating high-molecular mass complex. Expression of a ULK1/2 binding-deficient ATG13 variant in ATG13-deficient cells resulted in diminished but not completely abolished autophagic activity. Collectively, we propose that autophagy can be executed by mechanisms that are dependent or independent of the ULK1/2-ATG13 interaction.  相似文献   

14.
The mechanism by which protein aggregates are selectively degraded by autophagy is poorly understood. Previous studies show that a family of Atg8-interacting proteins function as receptors linking specific cargoes to the autophagic machinery. Here we demonstrate that during Caenorhabditis elegans embryogenesis, epg-7 functions as a scaffold protein mediating autophagic degradation of several protein aggregates, including aggregates of the p62 homologue SQST-1, but has little effect on other autophagy-regulated processes. EPG-7 self-oligomerizes and is degraded by autophagy independently of SQST-1. SQST-1 directly interacts with EPG-7 and colocalizes with EPG-7 aggregates in autophagy mutants. Mutations in epg-7 impair association of SQST-1 aggregates with LGG-1/Atg8 puncta. EPG-7 interacts with multiple ATG proteins and colocalizes with ATG-9 puncta in various autophagy mutants. Unlike core autophagy genes, epg-7 is dispensable for starvation-induced autophagic degradation of substrate aggregates. Our results indicate that under physiological conditions a scaffold protein endows cargo specificity and also elevates degradation efficiency by linking the cargo–receptor complex with the autophagic machinery.  相似文献   

15.
Macroautophagy/autophagy is an evolutionarily conserved cellular process whose induction is regulated by the ULK1 protein kinase complex. The subunit ATG13 functions as an adaptor protein by recruiting ULK1, RB1CC1 and ATG101 to a core ULK1 complex. Furthermore, ATG13 directly binds both phospholipids and members of the Atg8 family. The central involvement of ATG13 in complex formation makes it an attractive target for autophagy regulation. Here, we analyzed known interactions of ATG13 with proteins and lipids for their potential modulation of ULK1 complex formation and autophagy induction. Targeting the ATG101-ATG13 interaction showed the strongest autophagy-inhibitory effect, whereas the inhibition of binding to ULK1 or RB1CC1 had only minor effects, emphasizing that mutations interfering with ULK1 complex assembly do not necessarily result in a blockade of autophagy. Furthermore, inhibition of ATG13 binding to phospholipids or Atg8 proteins had only mild effects on autophagy. Generally, the observed phenotypes were more severe when autophagy was induced by MTORC1/2 inhibition compared to amino acid starvation. Collectively, these data establish the interaction between ATG13 and ATG101 as a promising target in disease-settings where the inhibition of autophagy is desired.  相似文献   

16.
Endosomal Sorting Complex Required for Transport (ESCRT)-III proteins mediate membrane remodeling and the release of endosomal intraluminal vesicles into multivesicular bodies. Here, we show that the ESCRT-III subunit paralogs CHARGED MULTIVESICULAR BODY PROTEIN1 (CHMP1A) and CHMP1B are required for autophagic degradation of plastid proteins in Arabidopsis thaliana. Similar to autophagy mutants, chmp1a chmp1b (chmp1) plants hyperaccumulated plastid components, including proteins involved in plastid division. The autophagy machinery directed the release of bodies containing plastid material into the cytoplasm, whereas CHMP1A and B were required for delivery of these bodies to the vacuole. Autophagy was upregulated in chmp1 as indicated by an increase in vacuolar green fluorescent protein (GFP) cleavage from the autophagic reporter GFP-ATG8. However, autophagic degradation of the stromal cargo RECA-GFP was drastically reduced in the chmp1 plants upon starvation, suggesting that CHMP1 mediates the efficient delivery of autophagic plastid cargo to the vacuole. Consistent with the compromised degradation of plastid proteins, chmp1 plastids show severe morphological defects and aberrant division. We propose that CHMP1 plays a direct role in the autophagic turnover of plastid constituents.  相似文献   

17.
《Autophagy》2013,9(1):123-136
Removal of ubiquitinated targets by autophagosomes can be mediated by receptor molecules, like SQSTM1, in a mechanism referred to as selective autophagy. While cytoplasmic protein aggregates, mitochondria, and bacteria are the best-known targets of selective autophagy, their role in the turnover of membrane receptors is scarce. We here showed that fasting-induced wasting of skeletal muscle involves remodeling of the neuromuscular junction (NMJ) by increasing the turnover of muscle-type CHRN (cholinergic receptor, nicotinic/nicotinic acetylcholine receptor) in a TRIM63-dependent manner. Notably, this process implied enhanced production of endo/lysosomal carriers of CHRN, which also contained the membrane remodeler SH3GLB1, the E3 ubiquitin ligase, TRIM63, and the selective autophagy receptor SQSTM1. Furthermore, these vesicles were surrounded by the autophagic marker MAP1LC3A in an ATG7-dependent fashion, and some of them were also positive for the lysosomal marker, LAMP1. While the amount of vesicles containing endocytosed CHRN strongly augmented in the absence of ATG7 as well as upon denervation as a model for long-term atrophy, denervation-induced increase in autophagic CHRN vesicles was completely blunted in the absence of TRIM63. On a similar note, in trim63?/? mice denervation-induced upregulation of SQSTM1 and LC3-II was abolished and endogenous SQSTM1 did not colocalize with CHRN vesicles as it did in the wild type. SQSTM1 and LC3-II coprecipitated with surface-labeled/endocytosed CHRN and SQSTM1 overexpression significantly induced CHRN vesicle formation. Taken together, our data suggested that selective autophagy regulates the basal and atrophy-induced turnover of the pentameric transmembrane protein, CHRN, and that TRIM63, together with SH3GLB1 and SQSTM1 regulate this process.  相似文献   

18.
Autophagic recycling of intracellular plant constituents is maintained at a basal level under normal growth conditions but can be induced in response to nutritional demand, biotic stress, and senescence. One route requires the ubiquitin‐fold proteins Autophagy‐related (ATG)‐8 and ATG12, which become attached to the lipid phosphatidylethanolamine (PE) and the ATG5 protein, respectively, during formation of the engulfing vesicle and delivery of its cargo to the vacuole for breakdown. Here, we genetically analyzed the conjugation machinery required for ATG8/12 modification in Arabidopsis thaliana with a focus on the two loci encoding ATG12. Whereas single atg12a and atg12b mutants lack phenotypic consequences, atg12a atg12b double mutants senesce prematurely, are hypersensitive to nitrogen and fixed carbon starvation, and fail to accumulate autophagic bodies in the vacuole. By combining mutants eliminating ATG12a/b, ATG5, or the ATG10 E2 required for their condensation with a method that unequivocally detects the ATG8‐PE adduct, we also show that ATG8 lipidation requires the ATG12–ATG5 conjugate. Unlike ATG8, ATG12 does not associate with autophagic bodies, implying that its role(s) during autophagy is restricted to events before the vacuolar deposition of vesicles. The expression patterns of the ATG12a and ATG12b genes and the effects of single atg12a and atg12b mutants on forming the ATG12–ATG5 conjugate reveal that the ATG12b locus is more important during basal autophagy while the ATG12a locus is more important during induced autophagy. Taken together, we conclude that the formation of the ATG12–ATG5 adduct is essential for ATG8‐mediated autophagy in plants by promoting ATG8 lipidation.  相似文献   

19.
ULK1 and ATG13 assemble with RB1CC1/FIP200 and ATG101 to form a macroautophagy (hereafter autophagy) induction (ULK1) complex in higher eukaryotes. The yeast counterpart, the Atg1 complex, is comprised of Atg1 and Atg13 (ULK1 and ATG13 homologs), Atg17 (a proposed functional homolog of RB1CC1), and either the Atg101 subunit (in Schizosaccharomyces pombe) or the Atg29-Atg31 heterodimer (in Saccharomyces cerevisiae). With mutual exclusivity of, and no detectable homology between, the Atg29-Atg31 dimer and Atg101, knowledge about the roles of these proteins in autophagy induction is an important piece in the puzzle of understanding the molecular mechanism of autophagy initiation. A recent study reporting the structure of the S. pombe homolog Atg101 bound to the Atg13HORMA domain is a notable contribution to this knowledge (see the punctum in this issue of the journal).  相似文献   

20.
ATG13     
《Autophagy》2013,9(6):944-956
During the past 20 years, autophagy signaling has entered the main stage of the cell biological theater. Autophagy represents an intracellular degradation process that is involved in both the bulk recycling of cytoplasmic components and the selective removal of organelles, protein aggregates, or intracellular pathogens. The understanding of autophagy has been greatly facilitated by the characterization of the molecular machinery governing this process. In yeast, initiation of autophagy is controlled by the Atg1 kinase complex, which is composed of the Ser/Thr kinase Atg1, the adaptor protein Atg13, and the ternary complex of Atg17-Atg31-Atg29. In vertebrates, the orthologous ULK1 kinase complex contains the Ser/Thr kinase ULK1 and the accessory proteins ATG13, RB1CC1, and ATG101. Among these components, Atg1/ULK1 have gained major attention in the past, i.e., for the identification of upstream regulatory kinases, the characterization of downstream substrates controlling the autophagic flux, or as a druggable target for the modulation of autophagy. However, accumulating data indicate that the function of Atg13/ATG13 has been likely underestimated so far. In addition to ensuring proper Atg1/ULK1 recruitment and activity, this adaptor molecule has been implicated in ULK1-independent autophagy processes. Furthermore, recent data have identified additional binding partners of Atg13/ATG13 besides the components of the Atg1/ULK1 complex, e.g., Atg8 family proteins or acidic phospholipids. Therefore, in this review we will center the spotlight on Atg13/ATG13 and summarize the role that Atg13/ATG13 assumes in the autophagy stage play.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号