首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Sterol regulatory element‐binding protein 1c (SREBP1c) plays key roles in maintenance of hepatic stellate cell (HSC) quiescence. The present researches investigated the mechanisms underlying the effects of SREBP1c on HSCs and liver fibrogenesis by HSC‐targeted overexpression of the active SREBP1c using adenovirus in vitro and in vivo. Results demonstrated that SREBP1c exerted inhibitory effects on TAA‐induced liver fibrosis. SREBP1c down‐regulated TGFβ1 level in liver, reduced the receptors for TGFβ1 and PDGFβ, and interrupted the signalling pathways of Smad3 and Akt1/2/3 but not ERK1/2 in HSCs. SREBP1c also led to the decreases in the protein levels of the bromodomain‐containing chromatin‐modifying factor bromodomain protein 4, methionine adenosyltransferase 2B (MAT2B) and TIMP1 in HSCs. In vivo activated HSCs did not express cyclin D1 and cyclin E1 but SREBP1c down‐regulated both cyclins in vitro. SREBP1c elevated PPARγ and MMP1 protein levels in the model of liver fibrosis. The effect of SREBP1c on MAT2B expression was associated with its binding to MAT2B1 promoter. Taken together, the mechanisms underlying the effects of SREBP1c on HSC activation and liver fibrosis were involved in its influences on TGFβ1 level, the receptors for TGFβ1 and PDGFβ and their downstream signalling, and the molecules for epigenetic regulation of genes.  相似文献   

4.
5.
6.
糖调节蛋白78抗四氯化碳诱导的人HepG2细胞脂肪合成   总被引:2,自引:0,他引:2  
为研究糖调节蛋白78(glucose regulated protein 78, GRP78)对肝细胞脂肪变性的影响,采用四氯化碳(carbon tetrachloride, CCl4)刺激人肝癌HepG2细胞,油红O染色证实,CCl4作用HepG2细胞后,细胞浆中脂肪颗粒明显增加,同时固醇调节元件结合蛋白1(sterol regulatory element binding protein 1, SREBP-1)蛋白水平和3羟3甲基戊二酸单酰CoA还原酶(HMGCoA还原酶)mRNA水平分别为对照组的1.55倍和1.70倍.构建人GRP78启动子荧光素酶报告基因载体pGL3/hGRP78P转染人肝癌HepG2细胞后,结果发现,CCl4促进GRP78基因转录,转录活性为诱导前的1.92倍. 构建人GRP78 RNAi沉默质粒pSuper/GRP78转染人肝癌HepG2细胞后,该质粒能特异性沉默内源性GRP78;内源性GRP78沉默后的人肝癌HepG2细胞经CCl4诱导, HMGCoA还原酶mRNA和SREBP-1蛋白的表达较对照组进一步升高,分别为对照组的1.48倍和2.38倍;人肝癌HepG2细胞GRP78的体外过表达能降低CCl4介导的HMGCoA还原酶mRNA和SREBP-1蛋白诱导表达,分别为对照组的78.5%和51.5%;油红O染色进一步证实,GRP78过表达可明显减少脂肪颗粒在HepG2细胞浆中的集聚.综上表明,GRP78可抑制CCl4的SREBP-1和HMGCoA还原酶的诱导表达以及HepG2细胞脂肪变性,提示GRP78的表达增加在肝细胞脂肪变性损伤过程中具有潜在的保护作用.  相似文献   

7.
ABCG1 and ABCG4 are highly homologous members of the ATP binding cassette (ABC) transporter family that regulate cellular cholesterol homeostasis. In adult mice, ABCG1 is known to be expressed in numerous cell types and tissues, whereas ABCG4 expression is limited to the central nervous system (CNS). Here, we show significant differences in expression of these two transporters during development. Examination of β-galactosidase-stained tissue sections from Abcg1−/−LacZ and Abcg4−/−LacZ knockin mice shows that ABCG4 is highly but transiently expressed both in hematopoietic cells and in enterocytes during development. In contrast, ABCG1 is expressed in macrophages and in endothelial cells of both embryonic and adult liver. We also show that ABCG1 and ABCG4 are both expressed as early as E12.5 in the embryonic eye and developing CNS. Loss of both ABCG1 and ABCG4 results in accumulation in the retina and/or brain of oxysterols, in altered expression of liver X receptor and sterol-regulatory element binding protein-2 target genes, and in a stress response gene. Finally, behavioral tests show that Abcg4−/− mice have a general deficit in associative fear memory. Together, these data indicate that loss of ABCG1 and/or ABCG4 from the CNS results in changes in metabolic pathways and in behavior.  相似文献   

8.
9.
10.
11.
Insulin signal transmission through the plasma membrane was studied in terms of relationship between basal autophosphorylation of the β-subunit and the ability by bind insulin by the -subunit of the insulin receptor. In a cell free system, receptors phosphorylated on tyrosine residues in the absence of insulin were separated from non-phosphorylated receptors using antiphosphotyrosine antibodies. Insulin binding assays were then performed on basally autophosphorylated and on non-phosphorylated receptors. We found that the tyrosine phosphorylated receptors, which corresponded to 25% of the total number of receptors, were accountable for 60–80% of insulin binding. Scatchard representation of binding data has shown that the plot corresponding to tyrosine phosphorylated receptors was localized above, and was steeper than the plot corresponding to non-phosphorylated receptors. These data make it likely that the conformation of -subunit which favours ligand binding is connected to the conformation of β-subunit which favours phosphate reception on tyrosine residues. Reciprocally, the high-affinity conformation of insulin receptor seems to become stabilized by basal autophosphorylation.  相似文献   

12.
13.
14.
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a promising therapeutic target for treating coronary heart disease. We report a novel antibody 1B20 that binds to PCSK9 with sub-nanomolar affinity and antagonizes PCSK9 function in-vitro. In CETP/LDLR-hemi mice two successive doses of 1B20, administered 14 days apart at 3 or 10 mpk, induced dose dependent reductions in LDL-cholesterol (≥ 25% for 7-14 days) that correlated well with the extent of PCSK9 occupancy by the antibody. In addition, 1B20 induces increases in total plasma antibody-bound PCSK9 levels and decreases in liver mRNA levels of SREBP-regulated genes PCSK9 and LDLR, with a time course that parallels decreases in plasma LDL-cholesterol (LDL-C). Consistent with this observation in mice, in statin-responsive human primary hepatocytes, 1B20 lowers PCSK9 and LDLR mRNA levels and raises serum steady-state levels of antibody-bound PCSK9. In addition, mRNA levels of several SREBP regulated genes involved in cholesterol and fatty-acid synthesis including ACSS2, FDPS, IDI1, MVD, HMGCR, and CYP51A1 were decreased significantly with antibody treatment of primary human hepatocytes. In rhesus monkeys, subcutaneous (SC) dosing of 1B20 dose-dependently induces robust LDL-C lowering (maximal ~70%), which is correlated with increases in target engagement and total antibody-bound PCSK9 levels. Importantly, a combination of 1B20 and Simvastatin in dyslipidemic rhesus monkeys reduced LDL-C more than either agent alone, consistent with a mechanism of action that predicts additive effects of anti-PCSK9 agents with statins. Our results suggest that antibodies targeting PCSK9 could provide patients powerful LDL lowering efficacy on top of statins, and lower cardiovascular risk.  相似文献   

15.
Cholesterol homeostasis is crucial for cellular function and organismal health. The key regulator for the cholesterol biosynthesis is sterol-regulatory element binding protein (SREBP)-2. The biochemical process and physiological function of SREBP-2 have been well characterized; however, it is not clear how this gene is epigenetically regulated. Here we have identified sirtuin (Sirt)6 as a critical factor for Srebp2 gene regulation. Hepatic deficiency of Sirt6 in mice leads to elevated cholesterol levels. On the mechanistic level, Sirt6 is recruited by forkhead box O (FoxO)3 to the Srebp2 gene promoter where Sirt6 deacetylates histone H3 at lysines 9 and 56, thereby promoting a repressive chromatin state. Remarkably, Sirt6 or FoxO3 overexpression improves hypercholesterolemia in diet-induced or genetically obese mice. In summary, our data suggest an important role of hepatic Sirt6 and FoxO3 in the regulation of cholesterol homeostasis.  相似文献   

16.
Although the flavonoid quercetin is known to inhibit activation of insulin receptor signaling, the inhibitory mechanism is largely unknown. In this study, we demonstrate that quercetin suppresses insulin induced dimerization of the insulin receptor (IR) through interfering with ligand–receptor interactions, which reduces the phosphorylation of IR and Akt. This inhibitory effect further inhibits insulin stimulated glucose uptake due to decreased cell membrane translocation of glucose transporter 4 (GLUT4), resulting in impaired cancer cell proliferation. The effect of quercetin in inhibiting tumor growth was also evident in an in vivo model, indicating a potential future application for quercetin in the treatment of cancers.  相似文献   

17.
18.
19.
Mammalian target of rapamycin (mTOR) is a core component of raptor-mTOR (mTORC1) and rictor-mTOR (mTORC2) complexes that control diverse cellular processes. Both mTORC1 and mTORC2 regulate several elements downstream of type I insulin-like growth factor receptor (IGF-IR) and insulin receptor (InsR). However, it is unknown whether and how mTOR regulates IGF-IR and InsR themselves. Here we show that mTOR possesses unexpected tyrosine kinase activity and activates IGF-IR/InsR. Rapamycin induces the tyrosine phosphorylation and activation of IGF-IR/InsR, which is largely dependent on rictor and mTOR. Moreover, mTORC2 promotes ligand-induced activation of IGF-IR/InsR. IGF- and insulin-induced IGF-IR/InsR phosphorylation is significantly compromised in rictor-null cells. Insulin receptor substrate (IRS) directly interacts with SIN1 thereby recruiting mTORC2 to IGF-IR/InsR and promoting rapamycin- or ligand-induced phosphorylation of IGF-IR/InsR. mTOR exhibits tyrosine kinase activity towards the general tyrosine kinase substrate poly(Glu-Tyr) and IGF-IR/InsR. Both recombinant mTOR and immunoprecipitated mTORC2 phosphorylate IGF-IR and InsR on Tyr1131/1136 and Tyr1146/1151, respectively. These effects are independent of the intrinsic kinase activity of IGF-IR/InsR, as determined by assays on kinase-dead IGF-IR/InsR mutants. While both rictor and mTOR immunoprecitates from rictor+/+ MCF-10A cells exhibit tyrosine kinase activity towards IGF-IR and InsR, mTOR immunoprecipitates from rictor−/− MCF-10A cells do not induce IGF-IR and InsR phosphorylation. Phosphorylation-deficient mutation of residue Tyr1131 in IGF-IR or Tyr1146 in InsR abrogates the activation of IGF-IR/InsR by mTOR. Finally, overexpression of rictor promotes IGF-induced cell proliferation. Our work identifies mTOR as a dual-specificity kinase and clarifies how mTORC2 promotes IGF-IR/InsR activation.  相似文献   

20.
We examined to determine whether hepatic gene expression is affected in mice in which blood lipid levels remain unchanged fed soy protein isolate (SPI) for a short time. We also examined SPI-mediated effects in farnesoid X receptor (FXR)-deficient mice. Compared with casein, SPI affected the expression of various hepatic genes related to lipid metabolism in the wild-type mice. No effects of SPI were observed in the FXR-deficient mice, suggesting the importance of FXR. Hepatic peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) gene expression was reduced by SPI, and this might be associated with a decrease in FXR expression. Decreased FXR led to decreased expression of its target, the bile-salt export pump necessary for bile acid secretion and dietary lipid absorption. The earliest response to SPI was a decrease in hepatic sterol regulatory element-binding protein (SREBP)-1c mRNA, on day 3. SPI activated hepatic adenosine monophosphate-activated protein kinase (AMPK), which can lead to a reduction in SREBP-1c mRNA. These data indicate the importance of SREBP-1c and PGC-1α/FXR in SPI-mediated alterations in hepatic gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号