首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
ABSTRACT: BACKGROUND: Spatial signal transduction plays a vital role in many intracellular processes such as eukaryotic chemotaxis, polarity generation, cell division. Furthermore it is being increasingly realized that the spatial dimension to signalling may play an important role in other apparently purely temporal signal transduction processes. It is being recognized that a conceptual basis for studying spatial signal transduction in signalling networks is necessary. RESULTS: In this work we examine spatial signal transduction in a series of standard motifs/networks. These networks include coherent and incoherent feedforward, positive and negative feedback, cyclic motifs, monostable switches, bistable switches and negative feedback oscillators. In all these cases, the driving signal has spatial variation. For each network we consider two cases, one where all elements are essentially non diffusible, and the other where one of the network elements may be highly diffusible. A careful analysis of steady state signal transduction provides many insights into the behaviour of all these modules. While in the non-diffusible case for the most part, spatial signalling reflects the temporal signalling behaviour, in the diffusible cases, we see significant differences between spatial and temporal signalling characteristics. Our results demonstrate that the presence of diffusible elements in the networks provides important constraints and capabilities for signalling. CONCLUSIONS: Our results provide a systematic basis for understanding spatial signalling in networks and the role of diffusible elements therein. This provides many insights into the signal transduction capabilities and constraints in such networks and suggests ways in which cellular signalling and information processing is organized to conform to or bypass those constraints. It also provides a framework for starting to understand the organization and regulation of spatial signal transduction in individual processes.  相似文献   

2.
Francis MR  Fertig EJ 《PloS one》2012,7(1):e29497
Complex network dynamics have been analyzed with models of systems of coupled switches or systems of coupled oscillators. However, many complex systems are composed of components with diverse dynamics whose interactions drive the system's evolution. We, therefore, introduce a new modeling framework that describes the dynamics of networks composed of both oscillators and switches. Both oscillator synchronization and switch stability are preserved in these heterogeneous, coupled networks. Furthermore, this model recapitulates the qualitative dynamics for the yeast cell cycle consistent with the hypothesized dynamics resulting from decomposition of the regulatory network into dynamic motifs. Introducing feedback into the cell-cycle network induces qualitative dynamics analogous to limitless replicative potential that is a hallmark of cancer. As a result, the proposed model of switch and oscillator coupling provides the ability to incorporate mechanisms that underlie the synchronized stimulus response ubiquitous in biochemical systems.  相似文献   

3.
4.
Plant disease resistance genes: recent insights and potential applications   总被引:19,自引:0,他引:19  
Plant disease resistance genes (R genes) encode proteins that detect pathogens. R genes have been used in resistance breeding programs for decades, with varying degrees of success. Recent molecular research on R proteins and downstream signal transduction networks has provided exciting insights, which will enhance the use of R genes for disease control. Definition of conserved structural motifs in R proteins has facilitated the cloning of useful R genes, including several that are functional in multiple crop species and/or provide resistance to a relatively wide range of pathogens. Numerous signal transduction components in the defense network have been defined, and several are being exploited as switches by which resistance can be activated against diverse pathogens.  相似文献   

5.
Just as complex electronic circuits are built from simple Boolean gates, diverse biological functions, including signal transduction, differentiation, and stress response, frequently use biochemical switches as a functional module. A relatively small number of such switches have been described in the literature, and these exhibit considerable diversity in chemical topology. We asked if biochemical switches are indeed rare and if there are common chemical motifs and family relationships among such switches. We performed a systematic exploration of chemical reaction space by generating all possible stoichiometrically valid chemical configurations up to 3 molecules and 6 reactions and up to 4 molecules and 3 reactions. We used Monte Carlo sampling of parameter space for each such configuration to generate specific models and checked each model for switching properties. We found nearly 4,500 reaction topologies, or about 10% of our tested configurations, that demonstrate switching behavior. Commonly accepted topological features such as feedback were poor predictors of bistability, and we identified new reaction motifs that were likely to be found in switches. Furthermore, the discovered switches were related in that most of the larger configurations were derived from smaller ones by addition of one or more reactions. To explore even larger configurations, we developed two tools: the “bistabilizer,” which converts almost-bistable systems into bistable ones, and frequent motif mining, which helps rank untested configurations. Both of these tools increased the coverage of our library of bistable systems. Thus, our systematic exploration of chemical reaction space has produced a valuable resource for investigating the key signaling motif of bistability.  相似文献   

6.
Finding a multidimensional potential landscape is the key for addressing important global issues, such as the robustness of cellular networks. We have uncovered the underlying potential energy landscape of a simple gene regulatory network: a toggle switch. This was realized by explicitly constructing the steady state probability of the gene switch in the protein concentration space in the presence of the intrinsic statistical fluctuations due to the small number of proteins in the cell. We explored the global phase space for the system. We found that the protein synthesis rate and the unbinding rate of proteins to the gene were small relative to the protein degradation rate; the gene switch is monostable with only one stable basin of attraction. When both the protein synthesis rate and the unbinding rate of proteins to the gene are large compared with the protein degradation rate, two global basins of attraction emerge for a toggle switch. These basins correspond to the biologically stable functional states. The potential energy barrier between the two basins determines the time scale of conversion from one to the other. We found as the protein synthesis rate and protein unbinding rate to the gene relative to the protein degradation rate became larger, the potential energy barrier became larger. This also corresponded to systems with less noise or the fluctuations on the protein numbers. It leads to the robustness of the biological basins of the gene switches. The technique used here is general and can be applied to explore the potential energy landscape of the gene networks.  相似文献   

7.
BACKGROUND: Network motifs within biological networks show non-random abundances in systems at different scales. Large directed protein networks at the cellular level are now well defined in several diverse species. We aimed to compare the nature of significantly observed two- and three-node network motifs across three different kingdoms (Arabidopsis thaliana for multicellular plants, Saccharomyces cerevisiae for unicellular fungi and Homo sapiens for animals). RESULTS: 'Two-node feedback' is the most significant motif in all three species. By considering the sign of each two-node feedback interaction, we examined the enrichment of the three types of two-node feedbacks [positive-positive (PP), negative-negative (NN) and positive-negative (PN)]. We found that PN is enriched in the network of A.thaliana, NN in the network of S.cerevisiae and PP and NN in the network of H.sapiens. Each feedback type has characteristic features of robustness, multistability and homeostasis. Conclusions: We suggest that amplification of particular network motifs emerges from contrasting dynamical and topological properties of the motifs, reflects the evolutionary design principles selected by the characteristic behavior of each species and provides a signature pointing to their behavior and function.  相似文献   

8.
9.
Modeling genetic switches with positive feedback loops   总被引:3,自引:0,他引:3  
In this paper, we develop a new methodology to design synthetic genetic switch networks with multiple genes and time delays, by using monotone dynamical systems. We show that the networks with only positive feedback loops have no stable oscillation but stable equilibria whose stability is independent of the time delays. In other words, such systems have ideal properties for switch networks and can be designed without consideration of time delays, because the systems can be reduced from functional spaces to Euclidian spaces. Therefore, we can ensure that the designed switches function correctly even with uncertain delays. We first prove the basic properties of the genetic networks composed of only positive feedback loops, and then propose a procedure to design the switches, which drastically simplifies analysis of the switches and makes theoretical analysis and design tractable even for large-scaled systems. Finally, to demonstrate our theoretical results, we show biologically plausible examples by designing a synthetic genetic switch with experimentally well investigated lacI, tetR, and cI genes for numerical simulation.  相似文献   

10.

Background

Signal duration (e.g. the time over which an active signaling intermediate persists) is a key regulator of biological decisions in myriad contexts such as cell growth, proliferation, and developmental lineage commitments. Accompanying differences in signal duration are numerous downstream biological processes that require multiple steps of biochemical regulation.

Results

Here we present an analysis that investigates how simple biochemical motifs that involve multiple stages of regulation can be constructed to differentially process signals that persist at different time scales. We compute the dynamic, frequency dependent gain within these networks and resulting power spectra to better understand how biochemical networks can integrate signals at different time scales. We identify topological features of these networks that allow for different frequency dependent signal processing properties.

Conclusion

We show that multi-staged cascades are effective in integrating signals of long duration whereas multi-staged cascades that operate in the presence of negative feedback are effective in integrating signals of short duration. Our studies suggest principles for why signal duration in connection with multiple steps of downstream regulation is a ubiquitous motif in biochemical systems.  相似文献   

11.
Kim JR  Yoon Y  Cho KH 《Biophysical journal》2008,94(2):359-365
Cellular networks are composed of complicated interconnections among components, and some subnetworks of particular functioning are often identified as network motifs. Among such network motifs, feedback loops are thought to play important dynamical roles. Intriguingly, such feedback loops are very often found as a coupled structure in cellular circuits. Therefore, we integrated all the scattered information regarding the coupled feedbacks in various cellular circuits and investigated the dynamical role of each coupled structure. Finally, we discovered that coupled positive feedbacks enhance signal amplification and bistable characteristics; coupled negative feedbacks realize enhanced homeostasis; coupled positive and negative feedbacks enable reliable decision-making by properly modulating signal responses and effectively dealing with noise.  相似文献   

12.
The ability to engineer an all‐or‐none cellular response to a given signaling ligand is important in applications ranging from biosensing to tissue engineering. However, synthetic gene network ‘switches’ have been limited in their applicability and tunability due to their reliance on specific components to function. Here, we present a strategy for reversible switch design that instead relies only on a robust, easily constructed network topology with two positive feedback loops and we apply the method to create highly ultrasensitive (nH>20), bistable cellular responses to a synthetic ligand/receptor complex. Independent modulation of the two feedback strengths enables rational tuning and some decoupling of steady‐state (ultrasensitivity, signal amplitude, switching threshold, and bistability) and kinetic (rates of system activation and deactivation) response properties. Our integrated computational and synthetic biology approach elucidates design rules for building cellular switches with desired properties, which may be of utility in engineering signal‐transduction pathways.  相似文献   

13.
14.
Biological networks, such as those describing gene regulation, signal transduction, and neural synapses, are representations of large-scale dynamic systems. Discovery of organizing principles of biological networks can be enhanced by embracing the notion that there is a deep interplay between network structure and system dynamics. Recently, many structural characteristics of these non-random networks have been identified, but dynamical implications of the features have not been explored comprehensively. We demonstrate by exhaustive computational analysis that a dynamical property—stability or robustness to small perturbations—is highly correlated with the relative abundance of small subnetworks (network motifs) in several previously determined biological networks. We propose that robust dynamical stability is an influential property that can determine the non-random structure of biological networks.  相似文献   

15.
It is well known that noise is inevitable in gene regulatory networks due to the low-copy numbers of molecules and local environmental fluctuations. The prediction of noise effects is a key issue in ensuring reliable transmission of information. Interlinked positive and negative feedback loops are essential signal transduction motifs in biological networks. Positive feedback loops are generally believed to induce a switch-like behavior, whereas negative feedback loops are thought to suppress noise effects. Here, by using the signal sensitivity (susceptibility) and noise amplification to quantify noise propagation, we analyze an abstract model of the Myc/E2F/MiR-17-92 network that is composed of a coupling between the E2F/Myc positive feedback loop and the E2F/Myc/miR-17-92 negative feedback loop. The role of the feedback loop on noise effects is found to depend on the dynamic properties of the system. When the system is in monostability or bistability with high protein concentrations, noise is consistently suppressed. However, the negative feedback loop reduces this suppression ability (or improves the noise propagation) and enhances signal sensitivity. In the case of excitability, bistability, or monostability, noise is enhanced at low protein concentrations. The negative feedback loop reduces this noise enhancement as well as the signal sensitivity. In all cases, the positive feedback loop acts contrary to the negative feedback loop. We also found that increasing the time scale of the protein module or decreasing the noise autocorrelation time can enhance noise suppression; however, the systems sensitivity remains unchanged. Taken together, our results suggest that the negative/positive feedback mechanisms in coupled feedback loop dynamically buffer noise effects rather than only suppressing or amplifying the noise.  相似文献   

16.
17.
18.
Xenopus oocytes mature in response to the steroid hormone progesterone. At the level of a population of oocytes, the response is graded-the higher the concentration of progesterone, the larger the fraction of oocytes that will mature-but at the level of the individual oocyte, the response is all-or-none. The all-or-none character of this cell fate switch is hypothesized to arise out of two properties of the signal transduction machinery that mediates maturation, positive feedback, and ultrasensitivity. This combination of positive feedback plus ultrasensitivity crops up again and again in cellular switches, from the lysis-lysogeny switch in phage-infected bacteria to the action potential in neurons.  相似文献   

19.
Nitric oxide (NO) is now recognised as a crucial player in plant defence against pathogens. Considerable progress has been made in defining upstream and downstream signals of NO. Recently, MAP kinases, cyclic nucleotide phosphates, calcium and phosphatidic acid were demonstrated to be involved in pathogen-induced NO-production. However, the search for inducers of NO synthesis is difficult because of the still ambiguous enzymatic source of NO. Accumulation of NO triggers signal transduction by other second messengers. Here we depict NON-EXPRESSOR OF PATHOGENESIS-RELATED 1 and glyceraldehyde-3-phosphate dehydrogenase as central redox switches translating NO redox signalling into cellular responses. Although the exact position of NO in defence signal networks is unresolved at last some NO-related signal cascades are emerging.  相似文献   

20.
Exploiting signaling pathways for the purpose of controlling cell function entails identifying and manipulating the information content of intracellular signals. As in the case of the ubiquitously expressed, eukaryotic mitogen-activated protein kinase (MAPK) signaling pathway, this information content partly resides in the signals' dynamical properties. Here, we utilize a mathematical model to examine mechanisms that govern MAPK pathway dynamics, particularly the role of putative negative feedback mechanisms in generating complete signal adaptation, a term referring to the reset of a signal to prestimulation levels. In addition to yielding adaptation of its direct target, feedback mechanisms implemented in our model also indirectly assist in the adaptation of signaling components downstream of the target under certain conditions. In fact, model predictions identify conditions yielding ultra-desensitization of signals in which complete adaptation of target and downstream signals culminates even while stimulus recognition (i.e., receptor-ligand binding) continues to increase. Moreover, the rate at which signal decays can follow first-order kinetics with respect to signal intensity, so that signal adaptation is achieved in the same amount of time regardless of signal intensity or ligand dose. All of these features are consistent with experimental findings recently obtained for the Chinese hamster ovary (CHO) cell lines (Asthagiri et al., J. Biol. Chem. 1999, 274, 27119-27127). Our model further predicts that although downstream effects are independent of whether an enzyme or adaptor protein is targeted by negative feedback, adaptor-targeted feedback can "back-propagate" effects upstream of the target, specifically resulting in increased steady-state upstream signal. Consequently, where these upstream components serve as nodes within a signaling network, feedback can transfer signaling through these nodes into alternate pathways, thereby promoting the sort of signaling cross-talk that is becoming more widely appreciated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号