首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Toda H  Zhao X  Dickson BJ 《Cell reports》2012,1(6):599-607
Females of many animal species emit chemical signals that attract and arouse males for mating. For example, the major aphrodisiac pheromone of Drosophila melanogaster females, 7,11-heptacosadiene (7,11-HD), is a potent inducer of male-specific courtship and copulatory behaviors. Here, we demonstrate that a set of gustatory sensory neurons on the male foreleg, defined by expression of the ppk23 marker, respond to 7,11-HD. Activity of these neurons is required for males to robustly court females or to court males perfumed with 7,11-HD. Artificial activation of these ppk23(+) neurons stimulates male-male courtship even without 7,11-HD perfuming. These data identify the ppk23(+) sensory neurons as the primary targets for female sex pheromones in Drosophila.  相似文献   

2.
Insects utilize diverse families of ion channels to respond to environmental cues and control mating, feeding, and the response to threats. Although degenerin/epithelial sodium channels (DEG/ENaC) represent one of the largest families of ion channels in Drosophila melanogaster, the physiological functions of these proteins are still poorly understood. We found that the DEG/ENaC channel ppk23 is expressed in a subpopulation of sexually dimorphic gustatory-like chemosensory bristles that are distinct from those expressing feeding-related gustatory receptors. Disrupting ppk23 or inhibiting activity of ppk23-expressing neurons did not alter gustatory responses. Instead, blocking ppk23-positive neurons or mutating the ppk23 gene delayed the initiation and reduced the intensity of male courtship. Furthermore, mutations in ppk23 altered the behavioral response of males to the female-specific aphrodisiac pheromone 7(Z), 11(Z)-Heptacosadiene. Together, these data indicate that ppk23 and the cells expressing it play an important role in the peripheral sensory system that determines sexual behavior in Drosophila.  相似文献   

3.
In Drosophila, pheromones play a crucial role in regulating courtship behaviors. In males, female aphrodisiac pheromones promote male‐female courtship, and male antiaphrodisiac pheromones inhibit male‐male courtship. Previous studies have reported that receptor proteins belonging to the pickpocket (ppk) family, ionotropic receptor family and gustatory receptor family are required for pheromone detection and normal courtship. However, none of them has been shown to be sufficient for sensing pheromones after ectopic expression in originally unresponsive cells. “M” cells are activated by male antiaphrodisiac pheromones but not female aphrodisiac pheromones, and the activated cells inhibit male‐male courtship. In our study, male flies with ectopic expression of ppk25, ppk29 and ppk23 in “M” cells showed decreased male‐female courtship. Using an in vivo calcium imaging approach, we found that the “M” cells expressing these three ppks were significantly activated by the female aphrodisiac pheromone 7,11‐heptacosadiene (7,11‐HD). Our results indicate that a sodium channel consisting, at minimum, of ppk25, ppk29 and ppk23, can sense 7,11‐HD, most likely as a receptor. Our findings may help us gain insights into the molecular mechanisms of pheromonal functions.  相似文献   

4.
5.
Low volatility, lipid-like cuticular hydrocarbon pheromones produced by Drosophila melanogaster females play an essential role in triggering and modulating mating behavior, but the chemosensory mechanisms involved remain poorly understood. Recently, we showed that the CheB42a protein, which is expressed in only 10 pheromone-sensing taste hairs on the front legs of males, modulates progression to late stages of male courtship behavior in response to female-specific cuticular hydrocarbons. Here we report that expression of all 12 genes in the CheB gene family is predominantly or exclusively gustatory-specific, and occurs in many different, often non-overlapping patterns. Only the Gr family of gustatory receptor genes displays a comparable variety of gustatory-specific expression patterns. Unlike Grs, however, expression of all but one CheB gene is sexually dimorphic. Like CheB42a, other CheBs may therefore function specifically in gustatory perception of pheromones. We also show that CheBs belong to the ML superfamily of lipid-binding proteins, and are most similar to human GM2-activator protein (GM2-AP). In particular, GM2-AP residues involved in ligand binding are conserved in CheBs but not in other ML proteins. Finally, CheB42a is specifically secreted into the inner lumen of pheromone-sensing taste hairs, where pheromones interact with membrane-bound receptors. We propose that CheB proteins interact directly with lipid-like Drosophila pheromones and modulate their detection by the gustatory signal transduction machinery. Furthermore, as loss of GM2-AP in Tay-Sachs disease prevents degradation of GM2 gangliosides and results in neurodegeneration, the function of CheBs in pheromone response may involve biochemical mechanisms critical for lipid metabolism in human neurons.  相似文献   

6.
In insects, increasing evidence suggests that small secreted pheromone binding proteins (PBPs) and odorant binding proteins (OBPs) are important for normal olfactory detection of airborne pheromones and odorants far from their source. In contrast, it is unknown whether extracellular ligand binding proteins participate in perception of less volatile chemicals, including many pheromones, that are detected by direct contact with chemosensory organs. CheB42a, a small Drosophila melanogaster protein unrelated to known PBPs or OBPs, is expressed and likely secreted in only a small subset of gustatory sensilla on males' front legs, the site of gustatory perception of contact pheromones. Here we show that CheB42a is expressed specifically in the sheath cells surrounding the taste neurons expressing Gr68a, a putative gustatory pheromone receptor for female cuticular hydrocarbons that stimulate male courtship. Surprisingly, however, CheB42a mutant males attempt to copulate with females earlier and more frequently than control males. Furthermore, CheB42a mutant males also attempt to copulate more frequently with other males that secrete female-specific cuticular hydrocarbon pheromones, but not with females lacking cuticular hydrocarbons. Together, these data indicate that CheB42a is required for a normal gustatory response to female cuticular hydrocarbon pheromones that modulate male courtship.  相似文献   

7.
In the sorghum plant bug Stenotus rubrovittatus (Matsumura) (Hemiptera: Miridae), mating behavior consists of male courtship and female mating receptivity. Previous studies have found that female age is correlated with ovary development and that mature females with developed ovaries are more receptive to male courtship. Thus, we examined whether male age affects the mating behavior of both sexes and male accessory gland development. Unmated males 0–9 days after emergence and 3-day-old virgin females receptive to male courtship were studied. Immediately after emergence, only 20 % of the males courted females (n = 25). At 3 days old, 68 % of the males courted females (n = 25), the most active age. In contrast, more than 75 % of the courted females were receptive to the male courtship regardless of male age. These results indicate that only male courtship behavior is affected by male age, although it is not enhanced in proportion to male age. Male accessory glands developed with male age. However, no clear relationship was detected between male courtship behavior and accessory gland development. In S. rubrovittatus, it is difficult to explain male courtship behavior solely from male age and accessory gland development.  相似文献   

8.
After mating, females may experience a decline in sexual receptivity and attractiveness that may be associated with changes in the production and emission of sex pheromones. In some cases, these changes are produced by chemical substances or structures (e.g., mating plugs) produced by males as a strategy to avoid or reduce sperm competition. In scorpions, sex pheromones may be involved in finding potential mates and starting courtship. Here, we tested the hypothesis that the males of Urophonius brachycentrus, a species that produces a mating plug, use chemical communication (sex pheromones) to detect, localize, and discriminate females according to their mating status (virgin or inseminated), aided by chemical signaling. We also explored the effect of extracting of the mating plug on chemical communication and mating acceptance. We used Y‐maze olfactometers with different stimuli to analyze male choice and exploration time. To evaluate mating acceptance, we measured the attractiveness and receptivity of females of different mating status. We found that chemical communication occurs through volatile pheromones, but not contact pheromones. Males equally preferred sites with virgin or inseminated females with removed mating plug. In turn, females with these mating statuses were more attractive and receptive for males than inseminated females. This study suggests that the mating plug significantly affects female chemical attractiveness with an effect on volatile pheromones and decreasing sexual mating acceptance of females. The decline in the female's sexual receptivity is a complex process that may respond to several non‐exclusive mechanisms imposed by males and strategically modulated by females.  相似文献   

9.
Courtship pheromones play an important role in salamander reproductive behaviour. In salamanders of the family Plethodontidae, males deliver specialized pheromones to females during courtship interactions. These courtship pheromones increase female receptivity and may be involved in mate discrimination. In order to test hypotheses related to mate discrimination, we staged courtship encounters between male-female Plethodon shermani pairs in which the female received pheromones obtained from either conspecific (P. shermani) or heterospecific (P. yonahlossee orP. montanus ) males. Both conspecific and heterospecific pheromones increased female receptivity. Moreover, pheromones from both heterospecific species were as effective as the conspecific pheromone in increasing female receptivity inP. shermani females. Our results suggest that the courtship pheromone signal and function may be conserved across related species, with mate discrimination occurring before pheromone delivery. Copyright 2003 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.  相似文献   

10.
Internal fertilization without copulation or prolonged physical contact is a rare reproductive mode among vertebrates. In many newts (Salamandridae), the male deposits a spermatophore on the substrate in the water, which the female subsequently takes up with her cloaca. Because such an insemination requires intense coordination of both sexes, male newts have evolved a courtship display, essentially consisting of sending pheromones under water by tail-fanning towards their potential partner. Behavioral experiments until now mostly focused on an attractant function, i.e. showing that olfactory cues are able to bring both sexes together. However, since males start their display only after an initial contact phase, courtship pheromones are expected to have an alternative function. Here we developed a series of intraspecific and interspecific two-female experiments with alpine newt (Ichthyosaura alpestris) and palmate newt (Lissotriton helveticus) females, comparing behavior in male courtship water and control water. We show that male olfactory cues emitted during tail-fanning are pheromones that can induce all typical features of natural female mating behavior. Interestingly, females exposed to male pheromones of their own species show indiscriminate mating responses to conspecific and heterospecific females, indicating that visual cues are subordinate to olfactory cues during courtship.  相似文献   

11.
12.
Oviposition is a female-specific behavior that directly affects fecundity, and therefore fitness. If a fertilized female encounters another male that she has evaluated to be of better quality than her previous mate, it would be beneficial for her to remate with this male rather than depositing her eggs. Females who decided not to remate exhibited rejection behavior toward a courting male and engaged in oviposition. Although recent studies of Drosophila melanogaster identified sensory neurons and putative second-order ascending interneurons that mediate uterine afferents affecting female reproductive behavior, little is known about the brain circuitry that selectively activates rejection versus oviposition behaviors. We identified the sexually dimorphic pC2l and female-specific pMN2 neurons, two distinct classes of doublesex (dsx)-expressing neurons that can initiate ovipositor extension associated with rejection and oviposition behavior, respectively. pC2l interneurons, which induce ovipositor extrusion for rejection in females, have homologues that control courtship behavior in males. Activation of these two classes of neurons appears to be mutually exclusive and each governs hierarchical control of the motor program in the VNC either for rejection or oviposition, contributing centrally to the switching on or off of the alternative motor programs.  相似文献   

13.
Males of the fly Drosophila melanogaster initially court mated, unreceptive females but later develop an avoidance reaction against them and even become temporally unresponsive to virgin females. This conditioned inhibition has been described as an associative process, the conditioned stimulus being a mixture of pheromones on the female's cuticle. To assess the evolutionary significance of courtship conditioning we recorded and analysed the male's behaviour during the conditioning process. The time traces of individual males were marked by an abrupt behavioural change. The time he spent courting suddenly decreased, and the frequency of ‘turn-away’ events at the same time sharply increased. Thus, the gradual decline of courtship observed as a group average does not reflect a slow change in motivation of the individual male but rather the interindividual differences of an active, experience-guided all-or-none decision to stop courting and to avoid the female. Three recently collected D. melanogaster strains were each maintained under two distinct mating conditions. Males were kept together with females for either ca. 2 weeks or 18 h. After 21 generations males of the two regimes differed markedly in their behaviour towards mated females. With long interaction periods between males and females, selection favoured courtship conditioning, while with short periods no such selection was observed. Slowly recovering receptivity of mated females may be needed for the maintenance of courtship conditioning. Courtship conditioning in D. melanogaster appears to be a fitness-relevant behaviour adapted to high-density populations with females mating a second time.  相似文献   

14.
Drosophila male courtship is a complex and robust behavior, the potential for which is genetically built into specific neural circuits in the central nervous system. Previous studies using male-female mosaics and the flies with defects in particular brain structures implicated the critical central regions involved in male courtship behavior. However, their acute physiological roles in courtship regulation still largely remain unknown. Using the temperature-sensitive Dynamin mutation, shibire(ts1), here we demonstrate the significance of two major brain structures, the mushroom bodies and the central complex, in experience-independent aspects of male courtship. We show that blocking of synaptic transmission in the mushroom body intrinsic neurons significantly delays courtship initiation and reduces the courtship activity by shortening the courtship bout length when virgin females are used as a sexual target. Interestingly, however, the same treatment affects neither initiation nor maintenance of courtship toward young males that release courtship-stimulating pheromones different from those of virgin females. In contrast, blocking of synaptic transmission in a central complex substructure, the fan-shaped body, slightly but significantly reduces courtship activity toward both virgin females and young males with little effect on courtship initiation. Taken together, our results indicate that the neuronal activity in the mushroom bodies plays an important role in responding to female-specific sex pheromones that stimulate initiation and maintenance of male courtship behavior, whereas the fan-shaped body neurons are involved in maintenance of male courtship regardless of the nature of courtship-stimulating cues.  相似文献   

15.
Males and females have conflicting interests on the frequency and outcomes of mating interactions. Males maximize their fitness by mating with as many females as possible, whereas choosy females often reduce receptivity following copulation. Alternative male mating tactics can be adaptive in their expression to a variety of mating contexts, including interactions with a relatively unreceptive mated female. Male Rabidosa punctulata wolf spiders can adopt distinctive mating tactics when interacting with a female, a complex courtship display, and/or a more coercive direct mount tactic that often involves grappling with females for copulation. In this study, we set up female mating treatments with initial trials and then paired mated and unmated females with males to observe both female remating frequencies and the male mating tactics used during the interactions. Males adopted different mating tactics depending on the mating status of the female they were paired with. Males were more likely to adopt a direct mount tactic with already-mated females and courtship with unmated females. Already-mated females were considerably less receptive to males during experimental trials, although they did remate 34% of the time, the majority of which were with males using a direct mount tactic. Whereas males adjusting to these contextual cues were able to gain more copulations, the observation of multiple mating in female R. punctulata introduces the potential for sperm competition. We discuss this sexual conflict in terms of the fitness consequences of these mating outcomes for both males and females.  相似文献   

16.
Calopteryx maculata and C. dimidiata damselfly females respond to male courtship with specific displays which signal differences in their receptivity. These include a rejection (wing spreading) and an invitation (wing-flipping) display, as well as a neutral (sit still) response. There are interspecific differences in the likelihood of each female display and in male responses to these displays. C. maculata males persist in courtship irrespective of female response, while C. dimidiata males generally stop courting when the female's response is rejection or neutrality. I suggest that these differences result from interspecific differences in oviposition behaviour. Female C. maculata oviposit at the water surface, which exposes them to disturbance by males attempting to mate. Females are therefore likely to remate to secure postcopulatory guarding when changing oviposition sites and males are expected to be persistent in courtship. Female C. dimidiata submerge to oviposit, which frees them from male disturbance and means that males have less control over female access to oviposition sites. Males therefore have less influence on mating by females and are expected not to persist in courtship of non-receptive females.  相似文献   

17.
Pheromonal communication is crucial with regard to mate choice in many animals including insects. Drosophila melanogaster flies produce a pheromonal bouquet with many cuticular hydrocarbons some of which diverge between the sexes and differently affect male courtship behavior. Cuticular pheromones have a relatively high weight and are thought to be -- mostly but not only -- detected by gustatory contact. However, the response of the peripheral and central gustatory systems to these substances remains poorly explored. We measured the effect induced by pheromonal cuticular mixtures on (i) the electrophysiological response of peripheral gustatory receptor neurons, (ii) the calcium variation in brain centers receiving these gustatory inputs and (iii) the behavioral reaction induced in control males and in mutant desat1 males, which show abnormal pheromone production and perception. While male and female pheromones induced inhibitory-like effects on taste receptor neurons, the contact of male pheromones on male fore-tarsi elicits a long-lasting response of higher intensity in the dedicated gustatory brain center. We found that the behavior of control males was more strongly inhibited by male pheromones than by female pheromones, but this difference disappeared in anosmic males. Mutant desat1 males showed an increased sensitivity of their peripheral gustatory neurons to contact pheromones and a behavioral incapacity to discriminate sex pheromones. Together our data indicate that cuticular hydrocarbons induce long-lasting inhibitory effects on the relevant taste pathway which may interact with the olfactory pathway to modulate pheromonal perception.  相似文献   

18.
Pheromonal communication plays a key role in the sociosexual behavior of rodents. The coadaptation between pheromones and chemosensory systems has been well illustrated in insects but poorly investigated in rodents and other mammals. We aimed to investigate whether coadaptation between male pheromones and female reception might have occurred in brown rats Rattus norvegicus. We recently reported that major urinary protein (MUP) pheromones are associated with male mating success in a brown rat subspecies, R. n. humiliatus (Rnh). Here, we discovered that MUPs were less polymorphic and occurred at much lower concentrations in males of a parapatric subspecies, R. n. caraco (Rnc), than in Rnh males, and found no association between pheromones and paternity success. Moreover, the observation of Rnc males that experienced chronic dyadic encounters and established dominance–submission relationships revealed that the dominant males achieved greater mating success than the subordinate males, but their MUP levels did not differ by social status. These findings suggest that male mating success in Rnc rats is related to social rank rather than to pheromone levels and that low concentration of MUPs might not be a reliable signal for mate choice in Rnc rats, which is different from the findings obtained in Rnh rats. In addition, compared with Rnh females, Rnc females exhibited reduced expression of pheromone receptor genes, and a lower number of vomeronasal receptor neurons were activated by MUP pheromones, which imply that the female chemosensory reception of pheromones might be structurally and functionally coadapted with male pheromone signals in brown rats.  相似文献   

19.
Male Pardosa milvina wolf spiders use their pedipalps both for copulation and courtship. Pedipalp loss is significantly more common among adult males compared to females. We measured the courtship and mating effects associated with the loss of one or both pedipalps among adult male P. milvina. Pedipalp loss significantly reduced courtship intensity, but had no influence on mounting success. Intact males were less likely to be cannibalized and suffered fewer predatory attacks by females than autotomized males. Loss of the left pedipalp resulted in significantly less intense courtship, higher female aggression levels, and delayed onset of courtship whereas loss of the right pedipalp minimally affected male and female behavior relative to intact males. Pedipalp displays may function in reducing female aggression rather than increasing female receptivity.  相似文献   

20.
Although females are traditionally thought of as the choosy sex, there is increasing evidence in many species that males will preferentially court or mate with certain females over others when given a choice. In the fruit fly, Drosophila melanogaster, males discriminate between potential mating partners based on a number of female traits, including species, mating history, age, and condition. Interestingly, many of these male preferences are affected by the male''s previous sexual experiences, such that males increase courtship toward types of females that they have previously mated with and decrease courtship toward types of females that have previously rejected them. Dmelanogaster males also show courtship and mating preferences for larger females over smaller females, likely because larger females have higher fecundity. It is unknown, however, whether this preference shows behavioral plasticity based on the male''s sexual history as we see for other male preferences. Here, we manipulate the sexual experience of Dmelanogaster males and test whether this manipulation has any effect on the strength of male mate choice for large females. We find that sexually inexperienced males have a robust courtship preference for large females that is unaffected by previous experience mating with, or being rejected by, females of differing sizes. Given that female body size is one of the most common targets of male mate choice across insect species, our experiments with Dmelanogaster may provide insight into how these preferences develop and evolve.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号