首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of turmeric extract and its pure yellow pigments curcumin I, II and III were tested on the nitrosation of methylurea by sodium nitrite at pH 3.6 and 30 degrees C. The nitrosomethylurea formed was monitored by checking the mutagenicity in S. typhimurium strains TA1535 and TA100 without metabolic activation. Turmeric extract as well as curcumins exhibit dose-dependent decreases of nitrosation. Curcumin III was the most effective nitrosation inhibitor among the compounds tested. The simultaneous treatment of inhibitor with nitrosation precursors was essential and pre- or post-treatment of inhibitor had no effect on the mutagenicity of nitrosomethylurea. The binding of nitrite with the inhibitors was studied at pH 3.6 and 30 degrees C. Curcumin I shows a dose-dependent depletion of nitrite ions thus making nitrite non-available for nitrosation. Curcumin I and III when tested also showed a time-dependent depletion of nitrite ions at pH 3.6 and 30 degrees C. Curcumin III has a higher affinity for nitrite ions than curcumin I.  相似文献   

2.
Ten different amino acid-glucose Maillard browning products before and after reaction with nitrite were evaluated by the Ames mutagenicity assay. No mutagenic response was observed in the methylene chloride extracts of any browning products tested before nitrosation. However, mutagenicity was showed in most of the browning mixtures, e.g., glycine-glucose, lysine-glucose (I), arginine-glucose, phenylalanine-glucose (II), and methionine-glucose after nitrosation when examined by Salmonella typhimurium strains TA98 and TA100 either with or without S-9 metabolic activation. Among the browning mixtures, (I) and (II) showed the greatest mutagenic activity after reaction with nitrite. The mutagenicity of lysine-glucose with nitrite was dependent on browning intensity, nitrosation pH, nitrosation time, nitrite level and blocking agents.  相似文献   

3.
Nitrosation activity was measured in Escherichia coli isolates and a range of nitrite reductase (nir) mutants. Activity was only detected in intact cells and could be inhibited by a number of treatments such as sonication and osmotic shock. Aerobically-grown cells had highest nitrosation activity compared to oxygen-limited ones. Inclusion of nitrite in growth media induced high activities of nitrite reductase and for some isolates, nitrosation. Analysis of nir mutants identified two which were unable to nitrosate. This result suggested that NADH-dependent nitrite reductase was implicated either directly or indirectly in nitrosation.  相似文献   

4.
We have developed a rapid and sensitive fluorimetric method, based on the formation of a fluorescent product from nitrosation of 2,3-diaminonaphthalene, for measuring the ability of bacteria to catalyze nitrosation of amines. We have shown in Escherichia coli that nitrosation can be induced under anaerobic conditions by nitrite and nitrate, that formate is the most efficient electron donor for this reaction, and that nitrosation may be catalyzed by nitrate reductase (EC 1.7.99.4). The narG mutants defective in nitrate reductase do not catalyze nitrosation, and the fnr gene is essential for nitrosation. Induction by nitrite or nitrate of nitrosation, N2O production, and nitrate reductase activity all require the narL gene.  相似文献   

5.
Using the Salmonella/microsome assay system, the mutagenicity of chewing tobacco extracts (CTE) treated with and without sodium nitrite under acidic conditions was examined. Mutagenic activity was found only for nitrite-treated CTE in both tester strains, TA98 and TA100, and was independent of metabolic activation. Formation of mutagenic substances from CTE by nitrite was dependent on acidic pHs (the highest at pH 2) and could be inhibited by ascorbate. The mutagenic potency of CTE plus nitrite was proportional to the content of nitroso compounds generated in the reaction mixture, indicating that the nitrosation process was involved. The possible in vivo nitrosation and the potential health effect are discussed.  相似文献   

6.
The mechanism of the denitrification and nitrosation reactions catalyzed by the heme cd-containing nitrite reductase from Pseudomonas stutzeri JM 300 has been studied with whole cell suspensions using H2(18)O, 15NO, and 15NO-2. The extent of H2(18)O exchange with the enzyme-bound nitrosyl intermediate, as determined by the 18O content of product N2O, decreased with increasing nitrite concentration, which is consistent with production of N2O by sequential reaction of two nitrite ions with the enzyme. Reaction of NO with whole cells in H2(18)O gave amounts of 18O in the N2O product consistent with equilibration of nitric oxide with a small pool of free nitrite. Using 15NO and NH2OH, competition between denitrification and nitrosation reactions was demonstrated, as is required if the enzyme-nitrosyl complex is an intermediate in both nitrosation and denitrification reactions. The first evidence for exchange of 18O between H2(18)O and a nitrosation intermediate occurring after the enzyme-nitrosyl complex, presumably an enzyme-bound nitrosamine, has been obtained. The collective results are most consistent with denitrification N2O originating via attack of NO-2 on a coordinated nitrosyl, as proposed earlier (Averill, B. A., and Tiedje, J. M. (1982) FEBS Lett. 138, 8-11).  相似文献   

7.
Polar solvent extracts of tobacco snuff under acidic conditions were mutagenic in Salmonella typhimurium. Using the Griess reagent test, nitrite ranging from approximately 1.8 to 5.4 mg/g of snuff was found in the polar fraction of extracts. After acid treatment, nitroso compounds in the amount corresponding to the nitrite concentration were detected. The mutagenic potency of the acid-treated extracts was consistent with the content of nitroso compounds generated. Formation of nitroso compounds and the mutagenic activity under acidic conditions was inhibited by ascorbic acid. The results indicate that a nitrosation process was involved in snuff extracts during acid treatment. Studies related to the source of nitrite in tobacco snuff demonstrated that snuff contained bacteria which were able to reduce nitrate to nitrite and that the amount of nitrite in snuff extracts could be further increased by incubation of the extracts with the bacteria. Since snuff contains a considerable amount of nitrate, it seems that reduction of nitrate in snuff to nitrite by bacteria, and nitrosation of certain constituents in snuff by nitrite under acidic conditions to form mutagenic nitroso compounds are possible mechanisms responsible for the acid-mediated mutagenicity of snuff extracts.  相似文献   

8.
Abstract Bacteria isolated from the normal and the hypoacidic stomach were investigated for their ability to catalyse the nitrosation of the secondary amine morpholine. Bacterial numbers were found to be dependent upon pH and species characteristic of the faecal flora were found only in the hypoacidic group. A range of nitrosating abilities was found. The inclusion of 5 mM nitrite during growth produced strain-specific results, in some cases stimulating the catalysis, in others providing inhibition. It is proposed thar catalysis may involve a nitrite reductase and that the different effects of nitrite on nitrosation may be due to contributions from two or more types of reductase activity.  相似文献   

9.
Nitrite is a breakdown product of nitric oxide that in turn is oxidized to nitrate in cells. In this work, we investigated whether reactive oxidant species might be generated during nitrite metabolism in cultured EA.hy926 endothelial cells. Nitrite was taken up by the cells in a time- and concentration-dependent manner and oxidized to nitrate, which accumulated in cells to concentrations almost 10-fold those of nitrite. Conversion of low millimolar concentrations of nitrite to nitrate was associated with increased oxidant stress in the cells. This manifested as increased oxidation of dihydrofluorescein in tandem with depletion of both GSH and ascorbate. Further, loading cells with ascorbate or treatment with desferrioxamine prevented nitrite-induced dihydrofluorescein oxidation. Nitrite within cells also increased the fluorescence of 4-amino-5-methylamino-2′,7′-difluorofluorescein and inhibited the activity of cellular glyceraldehyde 3-phosphate dehydrogenase, which are markers of intracellular nitrosation reactions. Intracellular ascorbate partially prevented both of these effects of nitrite. Although ascorbate can reduce nitrite to nitric oxide at low pH, in endothelial cells loaded with ascorbate, its predominant effect at high nitrite concentrations is to prevent potentially damaging nitrosation reactions.  相似文献   

10.
May JM  Qu ZC  Li X 《Free radical research》2004,38(6):581-589
Nitrite is a breakdown product of nitric oxide that in turn is oxidized to nitrate in cells. In this work, we investigated whether reactive oxidant species might be generated during nitrite metabolism in cultured EA.hy926 endothelial cells. Nitrite was taken up by the cells in a time- and concentration-dependent manner and oxidized to nitrate, which accumulated in cells to concentrations almost 10-fold those of nitrite. Conversion of low millimolar concentrations of nitrite to nitrate was associated with increased oxidant stress in the cells. This manifested as increased oxidation of dihydrofluorescein in tandem with depletion of both GSH and ascorbate. Further, loading cells with ascorbate or treatment with desferrioxamine prevented nitrite-induced dihydrofluorescein oxidation. Nitrite within cells also increased the fluorescence of 4-amino-5-methylamino-2',7'-difluorofluorescein and inhibited the activity of cellular glyceraldehyde 3-phosphate dehydrogenase, which are markers of intracellular nitrosation reactions. Intracellular ascorbate partially prevented both of these effects of nitrite. Although ascorbate can reduce nitrite to nitric oxide at low pH, in endothelial cells loaded with ascorbate, its predominant effect at high nitrite concentrations is to prevent potentially damaging nitrosation reactions.  相似文献   

11.
An intrahepatic host-mediated mutagenicity assay capable of detecting low levels of N-nitrosomorpholine (NMOR) is described. The indicator organism was Salmonella typhimurium TA1530 which had been injected intravenously 10 min prior to the administration of the test compound. The bacteria were subsequently recovered from the liver and scored for revertants by standard methods. The lower limit of detectibility of this system for intubated NMOR was 0.2 microgram/g body weight. This assay was then used to study the formation of NMOR in vivo from morpholine and nitrite which had been sequentially gavaged to mice. Under acidic conditions (pH 3.4) 12--19% of the administered morpholine was converted to NMOR in the presence of excess nitrite. This nitrosation, and the subsequent uptake and activation of the NMOR, took place so rapidly that most of the total mutagenic response was complete within 15 min. This response was inhibited by prior intubation of ascorbic acid, a known inhibitor of nitrosation, and enhanced by sodium thiocyanate, a nitrosation catalyst.  相似文献   

12.
The large majority of N-nitroso compounds (NOC) have been found to produce genotoxic effects and to cause tumor development in laboratory animals; four NOC have been classified by the International Agency for Research on Cancer (IARC) as probably and another 15 as possibly carcinogenic to humans. A considerable fraction of drugs are theoretically nitrosatable due to the presence of amine, amide or other groups which by reacting with nitrite in the gastric environment, or even in other sites, can give rise to the formation of NOC, and in some cases other reactive species. This review provides a synthesis of information on the chemistry of NOC formation, the carcinogenic activity of NOC in animals and humans and the inhibitors of nitrosation reactions. It contains information on the drugs which have been tested for the formation of NOC by reaction with nitrite and the genotoxic-carcinogenic effects of their nitrosation products. In an extensive search we have found that 182 drugs, representing a wide variety of chemical structures and therapeutic activities, were examined in various experimental conditions for their ability to react with nitrite, and 173 (95%) of them were found to form NOC or other reactive species. Moreover, 136 drugs were examined in short-term genotoxicity tests and/or in long-term carcinogenesis assays, either in combination with nitrite or using their nitrosation product, in order to establish whether they produce genotoxic and carcinogenic effects; 112 (82.4%) of them have been found to give at least one positive response. The problem of endogenous drug nitrosation is largely unrecognized. Only a small fraction of theoretically nitrosatable drugs have been examined for the possible formation of genotoxic-carcinogenic NOC, guidelines for genotoxicity testing of pharmaceuticals do not indicate the need of performing the appropriate tests, and patients are not informed that the drug-nitrite interaction and the consequent risk can be reduced to a large extent by consuming the nitrosatable drug with ascorbic acid.  相似文献   

13.
Three naturally occurring indoles were evaluated for potential nitrosatability using the Nitrosation Assay Procedure (NAP test) as recommended by the World Health Organisation. All three indoles i.e. tryptophan, tryptamine and 5-hydroxy-tryptamine were nitrosated to products which were directly mutagenic for S. typhimurium TA1537. In addition, the products of nitrosation of tryptamine and 5-hydroxytryptamine were also mutagenic for strains TA1538, TA98 and TA1535 without the need for metabolic activation. The sensitivities of the frameshift-detecting strains TA1537, TA1538 and TA98 were of particular interest, since nitroso compounds are characteristically base-substitution mutagens. The mutagenic effects of the products formed after nitrosation of each indole at pH 3.6, were eliminated in the presence of S9 mix. This was not the case when the nitrosation assay was carried out at pH 2.6. At this pH the mutagenicity of the nitrosated products varied in the presence of S9 mix and depended upon the nature of the indole undergoing nitrosation, and the bacterial test strain utilised for the mutagenicity assay. This indicated that more than one mutagenic product was responsible for the observed effects. As well as pH, a number of other factors influenced the formation of mutagenic nitroso products. Most notably, the concentrations of precursor compounds (sodium nitrite, and indole) present in the NAP test were of critical importance. As the sodium nitrite concentration was reduced from that recommended by the W.H.O. (40 mM), so the mutagenicity decreased. For all three compounds significant mutagenic effects were lost at sodium nitrite concentrations below 15 mM. In conclusion the data presented in this paper clearly demonstrates that individuals are chronically exposed to naturally occurring substances which readily nitrosate in excess nitrous acid and yield bacterial mutagens.  相似文献   

14.
Ruhemann's purple is formed from nitrite, ascorbate, and ninhydrin with the formation of variable amounts of ammonia. The reaction begins with the nitrosation of ninhydrin to form nitrosoninhydrin, which will release nitric oxide. The nitrosoninhydrin is reduced by ascorbate to diketohydrindamine, which then couples with a second molecule of ninhydrin to form the pigment. The concentration of pigment is linear with nitrite over the range 1 to 10 mm, but ammonia production is not stoichiometric with initial nitrite.  相似文献   

15.
The genotoxic potential of bidi tobacco was evaluated by mutagenicity testing of aqueous, aqueous: ethanolic, ethanolic and chloroform extracts of processed tobacco used in the manufacture of 'bidis', indigenous forms of cigarettes smoked in India. The Salmonella/mammalian microsome test (Ames assay) was used to detect mutagenicity in tester strains TA98, TA100 and TA102. The extracts were tested in the absence and presence of metabolic activation using liver S9 from rat and hamster, and following in vitro nitrosation with sodium nitrite at acidic pH. All the extracts were non-mutagenic in the absence of nitrosation. The nitrosated aqueous extract was mutagenic in strains TA98 and TA100. While weak mutagenicity was elicited by the nitrosated aqueous: ethanolic extract in TA100, the nitrosated ethanolic extract induced a 3-fold increase in the number of revertants in the same strain. Moreover both these extracts elicited a strong mutagenic response in TA102, while the chloroform extract was non-mutagenic even after nitrite treatment. The present study indicates that workers employed in the bidi industry are exposed to potentially mutagenic and genotoxic chemicals in the course of their occupation.  相似文献   

16.
Nitrosation of propranolol under standard conditions recommended by the World Health Organization (10mM propranolol hydrochloridre, 40mM sodium nitrite, pH 3.5) was performed in the absence and in the presence of benzoic acid and of twelve mono-, di- and tri-hydroxybenzoic acids, added to the nitrosation mixture in concentrations ranging from 2 to 40mM, in order to examine their effect on the nitrosation reaction. The yield of N-nitrosopropranol (NOP) was reduced by benzoic acid and, with potency decreasing in the following order, by 2,3,4-tri-hydroxybenzoic acid>/=3,4-tri-hydroxybenzoic acid>2,5-di-hydroxybenzoic acid>2,3-di-hydroxybenzoic acid>3-hydroxybenzoic acid>2-hydroxybenzoic acid>3,4,5-tri-hydroxybenzoic acid>4-hydroxybenzoic acid; their inhibiting effect was concentration-dependent. In contrast, 2,4-di-hydroxybenzoic acid, 2,6-di-hydroxybenzoic acid and 2,4,6-tri-hydroxybenzoic acid caused an increase in the yield of NOP that was inversely related to their concentration. 3,5-Di-hydroxybenzoic acid was substantially inactive. These findings indicate that, depending on the positions of carboxyl group and hydroxyl groups on the benzene ring, mono-, di- and tri-hydroxybenzoic acids may inhibit or hasten nitrosation reactions. As compared with benzenediols and benzenetriols [Mutat. Res. 398 (1998) 75], hydroxybenzoic acids inhibit the nitrosation of propranolol to a greater extent and have the advantage of being nonmutagenic and less toxic.  相似文献   

17.
18.
段志芳  付莉  赵则海 《植物研究》2012,32(2):253-256
根据超声波最佳提取工艺条件提取得到化橘红总黄酮,经乙酸乙酯萃取分为酯溶性和水溶性两部分,比较它们对亚硝化反应的抑制作用,并分别采用硅胶柱层析对酯溶性成分分离纯化,采用大孔吸附树脂法对水溶性成分进行分离纯化,得到4个主要的黄酮类化合物,研究它们对亚硝化反应的抑制作用,以期得到抑制亚硝化活性较强的化合物。结果表明化橘红总黄酮提取率可达26.42%,酯溶性和水溶性部分均能阻断亚硝胺的合成及清除亚硝酸盐,其中水溶性黄酮提取物作用较强,分离得到的4个黄酮类化合物中柚皮苷的抑制作用较强,对亚硝胺的合成的最大阻断率可达94.7%,对亚硝酸盐的最大清除率可达92.3%。  相似文献   

19.
In a colorimetric assay using 4-(p-nitrobenzyl)pyridine (NBP) as a nucleophilic scavenger of alkylating agents, the nitrosation and alkylation reactions were investigated for a number of amino acids and derivatives. The alkylating activity increased with the square of the nitrite concentration. The nitrosation rate constants for aspartic acid, aspartame, and glycine ethylester (= precursors C) were 0.08, 1.4 and less than or equal to 0.2, respectively, expressed in terms of the pH-dependent k2 rate constant of the equation dNOC/dt = k2.[C].[nitrite]2. The rates correlated inversely with the basicity of the amino group. The stability of the alkylating activity was astonishingly high, both in acid and at neutral pH. Half-lives of 500, 200, and 30 min were determined for aspartic acid (pH 3.5), aspartame (pH 2.5), and glycine ethylester (pH 2.5). Values of 60, 15, and 2 min, respectively, were found at pH 7. It is concluded that rearrangement of the primary N-nitroso product to the ultimate alkylating agent could be rate-limiting. The potential of nitrosated alpha-amino acids to bind to DNA in vivo was investigated by oral gavage of radiolabelled glycine ethylester to rats, followed immediately by sodium nitrite. DNA was isolated from stomach and liver and analysed for radioactivity and modified nucleotides. No indication of DNA adduct formation was obtained. Based on an estimation of the dose fraction converted from glycine ethylester to the nitroso product under the given experimental conditions, the maximum possible DNA-binding potency of nitroso glycine ethylester is about one order of magnitude below the methylating potency of N-nitrosomethylurea in rat stomach. The apparent discrepancy to the in vitro data could be due to efficient detoxification processes in mammalian cells.  相似文献   

20.
Nitrosative stress can occur when reactive nitric oxide (NO) species compromise the function of biomolecules via formation of NO adducts on critical amine and thiol residues. The capacity of inducible nitric-oxide synthase (iNOS) to generate nitrosative stress was investigated in the murine macrophage line ANA-1. Sequential activation with the cytokines IFN-gamma and either tumor necrosis factor-alpha or interleukin-1beta resulted in the induction of iNOS and production of nitrite (20 nM/min) but failed to elicit nitrosation of extracellular 2,3-diaminonapthalene. Stimulation with IFN-gamma and bacterial lipopolysaccharide increased the relative level of iNOS protein and nitrite production of ANA-1 cells 2-fold; however, a substantial level of NO in the media was also observed, and nitrosation of 2,3-diaminonapthalene was increased greater than 30-fold. Selective scavenger compounds suggested that the salient nitrosating mechanism was the NO/O(2) reaction leading to N(2)O(3) formation. These data mimicked the pattern observed with a 5 microM concentration of the synthetic NO donor (Z)-1-[N-ammoniopropyl)-N-(n-propyl)amino]diazen-1-ium -1,2-diolate (PAPA/NO). The NO profiles derived from iNOS can be distinct and depend on the inductive signal cascades. The diverse consequences of NO production in macrophages may reside in the cellular mechanisms that control the ability of iNOS to form N(2)O(3) and elicit nitrosative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号