首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C-1027 is an enediyne antitumor antibiotic composed of a chromophore with four distinct chemical moieties, including an (S)-3-chloro-4,5-dihydroxy-beta-phenylalanine moiety that is derived from l-alpha-tyrosine. SgcC4, a novel aminomutase requiring no added co-factor that catalyzes the formation of the first intermediate (S)-beta-tyrosine and subsequently SgcC1 homologous to adenylation domains of nonribosomal peptide synthetases, was identified as specific for the SgcC4 product and did not recognize any alpha-amino acids. To definitively establish the substrate for SgcC1, a full kinetic characterization of the enzyme was performed using amino acid-dependent ATP-[(32)P]PP(i) exchange assay to monitor amino acid activation and electrospray ionization-Fourier transform mass spectroscopy to follow the loading of the activated beta-amino acid substrate to the peptidyl carrier protein SgcC2. The data establish (S)-beta-tyrosine as the preferred substrate, although SgcC1 shows promiscuous activity toward aromatic beta-amino acids such as beta-phenylalanine, 3-chloro-beta-tyrosine, and 3-hydroxy-beta-tyrosine, but all were <50-fold efficient. A putative active site mutant P571A adjacent to the invariant aspartic acid residue of all alpha-amino acid-specific adenylation domains known to date was prepared as a preliminary attempt to probe the substrate specificity of SgcC1; however the mutation resulted in a loss of activity with all substrates except (S)-beta-tyrosine, which was 142-fold less efficient relative to the wild-type enzyme. In total, SgcC1 is now confirmed to catalyze the second step in the biosynthesis of the (S)-3-chloro-4,5-dihydroxy-beta-phenylalanine moiety of C-1027, presenting downstream enzymes with an (S)-beta-tyrosyl-S-SgcC2 thioester substrate, and represents the first beta-amino acid-specific adenylation enzyme characterized biochemically.  相似文献   

2.
Christenson SD  Wu W  Spies MA  Shen B  Toney MD 《Biochemistry》2003,42(43):12708-12718
The enediyne antitumor antibiotic C-1027 contains an unusual (S)-3-chloro-4,5-dihydroxy-beta-phenylalanine moiety, which requires an aminomutase for its biosynthesis. Previously, we established that SgcC4 is an aminomutase that catalyzes the conversion of L-tyrosine to (S)-beta-tyrosine and employs 4-methylideneimidazole-5-one (MIO) at its active site [Christenson, S. D., Liu, W., Toney, M. D., and Shen, B. (2003) J. Am. Chem. Soc. 125, 6062-6063]. Here, we present a thorough analysis of the properties of SgcC4. L-Tyrosine is the best substrate among those tested and most likely serves as the in vivo precursor for the (S)-3-chloro-4,5-dihydroxy-beta-phenylalanine moiety. The presence of MIO in the active site is supported by several lines of evidence. (1) Addition of ATP or divalent metal ions has no effect on its aminomutase activity. (2) SgcC4 has optimal activity at pH approximately 8.8, similar to the pH optima of MIO-dependent ammonia lyases. (3) SgcC4 is strongly inhibited by sodium borohydride and potassium cyanide, but preincubation with L-tyrosine or 4-hydroxycinnamate largely prevents this inhibition. (4) The difference spectrum between SgcC4 and its S153A mutant shows a positive peak at approximately 310 nm, indicative of MIO. (5) The S153A mutation lowers k(cat)/K(M) 640-fold. The SgcC4-catalyzed conversion of L-tyrosine to (S)-beta-tyrosine proceeds via 4-hydroxycinnamate as an intermediate. The latter also acts as a competitive inhibitor with respect to L-tyrosine and serves as an alternative substrate for the production of beta-tyrosine in the presence of an amino source. A full time course for the SgcC4-catalyzed interconversion between L-tyrosine, beta-tyrosine, and 4-hydroxycinnamate was measured and analyzed to provide estimates for the rate constants in a minimal mechanism. SgcC4 also exhibits a beta-tyrosine racemase activity, but alpha-tyrosine racemase activity was not detected.  相似文献   

3.
A flavin reductase, which is naturally part of the ribonucleotide reductase complex of Escherichia coli, acted in cell extracts of recombinant E. coli strains under aerobic and anaerobic conditions as an "azo reductase." The transfer of the recombinant plasmid, which resulted in the constitutive expression of high levels of activity of the flavin reductase, increased the reduction rate for different industrially relevant sulfonated azo dyes in vitro almost 100-fold. The flavin reductase gene (fre) was transferred to Sphingomonas sp. strain BN6, a bacterial strain able to degrade naphthalenesulfonates under aerobic conditions. The flavin reductase was also synthesized in significant amounts in the Sphingomonas strain. The reduction rates for the sulfonated azo compound amaranth were compared for whole cells and cell extracts from both recombinant strains, E. coli, and wild-type Sphingomonas sp. strain BN6. The whole cells showed less than 2% of the specific activities found with cell extracts. These results suggested that the cytoplasmic anaerobic "azo reductases," which have been described repeatedly in in vitro systems, are presumably flavin reductases and that in vivo they have insignificant importance in the reduction of sulfonated azo compounds.  相似文献   

4.
S Zenno  K Saigo 《Journal of bacteriology》1994,176(12):3544-3551
Genes encoding NAD(P)H-flavin oxidoreductases (flavin reductases) similar in both size and sequence to Fre, the most abundant flavin reductase in Escherichia coli, were identified in four species of luminous bacteria, Photorhabdus luminescens (ATCC 29999), Vibrio fischeri (ATCC 7744), Vibrio harveyi (ATCC 33843), and Vibrio orientalis (ATCC 33934). Nucleotide sequence analysis showed Fre-like flavin reductases in P. luminescens and V. fischeri to consist of 233 and 236 amino acids, respectively. As in E. coli Fre, Fre-like enzymes in luminous bacteria preferably used riboflavin as an electron acceptor when NADPH was used as an electron donor. These enzymes also were good suppliers of reduced flavin mononucleotide (FMNH2) to the bioluminescence reaction. In V. fischeri, the Fre-like enzyme is a minor flavin reductase representing < 10% of the total FMN reductase. That the V. fischeri Fre-like enzyme has no appreciable homology in amino acid sequence to the major flavin reductase in V. fischeri, FRase I, indicates that at least two different types of flavin reductases supply FMNH2 to the luminescence system in V. fischeri. Although Fre-like flavin reductases are highly similar in sequence to luxG gene products (LuxGs), Fre-like flavin reductases and LuxGs appear to constitute two separate groups of flavin-associated proteins.  相似文献   

5.
Assimilation of iron by microorganisms requires the presence of ferric reductases which participate in the mobilization of iron from ferrisiderophores. The common structural and catalytic properties of these enzymes are described and shown to be identical to those of flavin reductases. This strongly suggests that, in general, the reduction of iron depends on reduced flavins provided by flavin reductases.  相似文献   

6.
The NADH-dependent nitrite reductase of Escherichia coli, which contains sirohaem, flavin, non-haem iron and labile sulphide, was examined by low-temperature e.s.r. spectroscopy. The enzyme, stored in the presence of nitrite and ascorbate, gave the spectrum of a nitrosyl derivative, with hyperfine splitting due to the nitrosyl nitrogen. On removal of these reagents, a series of signals centred around g = 6 was observed, typical of high-spin ferric haem. Cyanide converted this into a low-spin form. On reduction of the enzyme with NADH, an axial spectrum at g = 1.92, 2.01 was observed. The temperature-dependence of this signal is indicative of a [2Fe-2S] iron-sulphur cluster. The midpoint potential of this cluster was estimated to be -230 +/- 15 mV by two independent methods. Reduction of the enzyme with dithionite yielded further signals, which are at present unidentified, at g = 2.1-2.28. No signals were observed that could be assigned to a [4Fe-4S] cluster, such as is found in other sulphite reductases and nitrite reductases that contain sirohaem.  相似文献   

7.
A flavin reductase, which is naturally part of the ribonucleotide reductase complex of Escherichia coli, acted in cell extracts of recombinant E. coli strains under aerobic and anaerobic conditions as an “azo reductase.” The transfer of the recombinant plasmid, which resulted in the constitutive expression of high levels of activity of the flavin reductase, increased the reduction rate for different industrially relevant sulfonated azo dyes in vitro almost 100-fold. The flavin reductase gene (fre) was transferred to Sphingomonas sp. strain BN6, a bacterial strain able to degrade naphthalenesulfonates under aerobic conditions. The flavin reductase was also synthesized in significant amounts in the Sphingomonas strain. The reduction rates for the sulfonated azo compound amaranth were compared for whole cells and cell extracts from both recombinant strains, E. coli, and wild-type Sphingomonas sp. strain BN6. The whole cells showed less than 2% of the specific activities found with cell extracts. These results suggested that the cytoplasmic anaerobic “azo reductases,” which have been described repeatedly in in vitro systems, are presumably flavin reductases and that in vivo they have insignificant importance in the reduction of sulfonated azo compounds.  相似文献   

8.
B Lei  M Liu  S Huang    S C Tu 《Journal of bacteriology》1994,176(12):3552-3558
NAD(P)H-flavin oxidoreductases (flavin reductases) from luminous bacteria catalyze the reduction of flavin by NAD(P)H and are believed to provide the reduced form of flavin mononucleotide (FMN) for luciferase in the bioluminescence reaction. By using an oligonucleotide probe based on the partial N-terminal amino acid sequence of the Vibrio harveyi NADPH-FMN oxidoreductase (flavin reductase P), a recombinant plasmid, pFRP1, was obtained which contained the frp gene encoding this enzyme. The DNA sequence of the frp gene was determined; the deduced amino acid sequence for flavin reductase P consists of 240 amino acid residues with a molecular weight of 26,312. The frp gene was overexpressed, apparently through induction, in Escherichia coli JM109 cells harboring pFRP1. The cloned flavin reductase P was purified to homogeneity by following a new and simple procedure involving FMN-agarose chromatography as a key step. The same chromatography material was also highly effective in concentrating diluted flavin reductase P. The purified enzyme is a monomer and is unusual in having a tightly bound FMN cofactor. Distinct from the free FMN, the bound FMN cofactor showed a diminished A375 peak and a slightly increased 8-nm red-shifted A453 peak and was completely or nearly nonfluorescent. The Kms for FMN and NADPH and the turnover number of this flavin reductase were determined. In comparison with other flavin reductases and homologous proteins, this flavin reductase P shows a number of distinct features with respect to primary sequence, redox center, and/or kinetic mechanism.  相似文献   

9.
Flavin-containing reductases are involved in a wide variety of physiological reactions such as photosynthesis, nitric oxide synthesis, and detoxification of foreign compounds, including therapeutic drugs. Ferredoxin-NADP(H)-reductase (FNR) is the prototypical enzyme of this family. The fold of this protein is highly conserved and occurs as one domain of several multidomain enzymes such as the members of the diflavin reductase family. The enzymes of this family have emerged as fusion of a FNR and a flavodoxin. Although the active sites of these enzymes are very similar, different enzymes function in opposite directions, that is, some reduce oxidized nicotinamide adenine dinucleotide phosphate (NADP(+)) and some oxidize reduced nicotinamide adenine dinucleotide phosphate (NADPH). In this work, we analyze the protonation behavior of titratable residues of these enzymes through electrostatic calculations. We find that a highly conserved carboxylic acid in the active site shows a different titration behavior in different flavin reductases. This residue is deprotonated in flavin reductases present in plastids, but protonated in bacterial counterparts and in diflavin reductases. The protonation state of the carboxylic acid may also influence substrate binding. The physiological substrate for plastidic enzymes is NADP(+), but it is NADPH for the other mentioned reductases. In this article, we discuss the relevance of the environment of this residue for its protonation and its importance in catalysis. Our results allow to reinterpret and explain experimental data.  相似文献   

10.
Luminous bacteria contain several species of flavin reductases, which catalyze the reduction of FMN using NADH and/or NADPH as a reductant. The reduced FMN (i.e. FMNH(2)) so generated is utilized along with a long-chain aliphatic aldehyde and molecular oxygen by luciferase as substrates for the bioluminescence reaction. In this report, the general properties of luciferases and reductases from luminous bacteria are briefly summarized. Earlier and more recent studies demonstrating the direct transfer of FMNH(2) from reductases to luciferase are surveyed. Using reductases and luciferases from Vibrio harveyi and Vibrio fischeri, two mechanisms were uncovered for the direct transfer of reduced flavin cofactor and reduced flavin product of reductase to luciferase. A complex of an NADPH-specific reductase (FRP(Vh)) and luciferase from V. harveyi has been detected in vitro and in vivo. Both constituent enzymes in such a complex are catalytically active. The reduction of FRP(Vh)-bound FMN cofactor by NADPH is reversible, allowing the cellular contents of NADP(+) and NADPH as a factor for the regulation of the production of FMNH(2) by FRP(Vh) for luciferase bioluminescence. Other regulations of the activity coupling between reductase and luciferase are also discussed.  相似文献   

11.
Russell TR  Demeler B  Tu SC 《Biochemistry》2004,43(6):1580-1590
The homodimeric NADH:flavin oxidoreductase from Aminobacter aminovorans is an NADH-specific flavin reductase herein designated FRD(Aa). FRD(Aa) was characterized with respect to purification yields, thermal stability, isoelectric point, molar absorption coefficient, and effects of phosphate buffer strength and pH on activity. Evidence from this work favors the classification of FRD(Aa) as a flavin cofactor-utilizing class I flavin reductase. The isolated native FRD(Aa) contained about 0.5 bound riboflavin-5'-phosphate (FMN) per enzyme monomer, but one bound flavin cofactor per monomer was obtainable in the presence of excess FMN or riboflavin. In addition, FRD(Aa) holoenzyme also utilized FMN, riboflavin, or FAD as a substrate. Steady-state kinetic results of substrate titrations, dead-end inhibition by AMP and lumichrome, and product inhibition by NAD(+) indicated an ordered sequential mechanism with NADH as the first binding substrate and reduced FMN as the first leaving product. This is contrary to the ping-pong mechanism shown by other class I flavin reductases. The FMN bound to the native FRD(Aa) can be fully reduced by NADH and subsequently reoxidized by oxygen. No NADH binding was detected using 90 microM FRD(Aa) apoenzyme and 300 microM NADH. All results favor the interpretation that the bound FMN was a cofactor rather than a substrate. It is highly unusual that a flavin reductase using a sequential mechanism would require a flavin cofactor to facilitate redox exchange between NADH and a flavin substrate. FRD(Aa) exhibited a monomer-dimer equilibrium with a K(d) of 2.7 microM. Similarities and differences between FRD(Aa) and certain flavin reductases are discussed.  相似文献   

12.
Flavin‐dependent halogenases require reduced flavin adenine dinucleotide (FADH2), O2, and halide salts to halogenate their substrates. We describe the crystal structures of the tryptophan 6‐halogenase Thal in complex with FAD or with both tryptophan and FAD. If tryptophan and FAD were soaked simultaneously, both ligands showed impaired binding and in some cases only the adenosine monophosphate or the adenosine moiety of FAD was resolved, suggesting that tryptophan binding increases the mobility mainly of the flavin mononucleotide moiety. This confirms a negative cooperativity between the binding of substrate and cofactor that was previously described for other tryptophan halogenases. Binding of substrate to tryptophan halogenases reduces the affinity for the oxidized cofactor FAD presumably to facilitate the regeneration of FADH2 by flavin reductases.  相似文献   

13.
The structure of phthalate dioxygenase reductase (PDR), a monomeric iron-sulfur flavoprotein that delivers electrons from NADH to phthalate dioxygenase, is compared to ferredoxin-NADP+ reductase (FNR) and ferredoxin, the proteins that reduce NADP+ in the final reaction of photosystem I. The folding patterns of the domains that bind flavin, NAD(P), and [2Fe-2S] are very similar in the two systems. Alignment of the X-ray structures of PDR and FNR substantiates the assignment of features that characterize a family of flavoprotein reductases whose members include cytochrome P-450 reductase, sulfite and nitrate reductases, and nitric oxide synthase. Hallmarks of this subfamily of flavoproteins, here termed the FNR family, are an antiparallel β-barrel that binds the flavin prosthetic group, and a characteristic variant of the classic pyridine nucleotide-binding fold. Despite the similarities between FNR and PDR, attempts to model the structure of a dissociable FNR:ferredoxin complex by analogy with PDR reveal features that are at odds with chemical crosslinking studies (Zanetti, G., Morelli, D., Ronchi, S., Negri, A., Aliverti, A., & Curti, B., 1988, Biochemistry 27, 3753–3759). Differences in the binding sites for flavin and pyridine nucleotides determine the nucleotide specificities of FNR and PDR. The specificity of FNR for NADP+ arises primarily from substitutions in FNR that favor interactions with the 2′ phosphate of NADP+. Variations in the conformation and sequences of the loop adjoining the flavin phosphate affect the selectivity for FAD versus FMN. The midpoint potentials for reduction of the flavin and [2Fe–2S] groups in PDR are higher than their counterparts in FNR and spinach ferredoxin, by about 120 mV and 260 mV, respectively. Comparisons of the structure of PDR with spinach FNR and with ferredoxin from Anabaena 7120, along with calculations of electrostatic potentials, suggest that local interactions, including hydrogen bonds, are the dominant contributors to these differences in potential.  相似文献   

14.
FQR1 is a novel primary auxin-response gene that codes for a flavin mononucleotide-binding flavodoxin-like quinone reductase. Accumulation of FQR1 mRNA begins within 10 min of indole-3-acetic acid application and reaches a maximum of approximately 10-fold induction 30 min after treatment. This increase in FQR1 mRNA abundance is not diminished by the protein synthesis inhibitor cycloheximide, demonstrating that FQR1 is a primary auxin-response gene. Sequence analysis reveals that FQR1 belongs to a family of flavin mononucleotide-binding quinone reductases. Partially purified His-tagged FQR1 isolated from Escherichia coli catalyzes the transfer of electrons from NADH and NADPH to several substrates and exhibits in vitro quinone reductase activity. Overexpression of FQR1 in plants leads to increased levels of FQR1 protein and quinone reductase activity, indicating that FQR1 functions as a quinone reductase in vivo. In mammalian systems, glutathione S-transferases and quinone reductases are classified as phase II detoxification enzymes. We hypothesize that the auxin-inducible glutathione S-transferases and quinone reductases found in plants also act as detoxification enzymes, possibly to protect against auxin-induced oxidative stress.  相似文献   

15.
Dyhydrodipicolinate reductases were purified 100-fold from crude extracts of B. cereus and B. megaterium and their properties were compared with those of the reductase from B. subtilis. The molecular weights of the reductases of B. cereus and B. megaterium were fount to be 155,000 and 150,000, respectively. These reductases were shown to be free of flavin, unlike the B. subtilis enzyme, which contains flavin. Both NADPH and NADH acted as coenzymes for these two reductases. NADPH being three or four times more effective than NADH. The Km values for NADPH and dihydrodipicolinate were 8 micrometer and 62 micrometer, respectively, with B. cereus reductase, and 13 micrometer and 59 micrometer with B. megaterium reductase. The pH optima of the enzymes from B. cereus and B. megaterium were pH 7.4 and 7.2, respectively. The reductases were inhibited by dipicolinate noncompetitively with respect to dihydrodipicolinate and the Ki values were 85 micrometer and 140 micrometer, respectively. Lysine and diaminopimelate were not inhibitory. The properties of the reductases from B. cereus and B. megaterium were similar, but they differed considerably from those of the B. subtilis enzyme. However, all three Bacillus reductases were markedly inhibited by dipicolinate, unlike the enzyme from E. coli.  相似文献   

16.
Nitrate reductase of Neurospora crassa is a complex multi-redox protein composed of two identical subunits, each of which contains three distinct domains, an amino-terminal domain that contains a molybdopterin cofactor, a central heme-containing domain, and a carboxy-terminal domain which binds a flavin and a pyridine nucleotide cofactor. The flavin domain of nitrate reductase appears to have structural and functional similarity to ferredoxin NADPH reductase (FNR). Using the crystal structure of FNR and amino acid identities in numerous nitrate reductases as guides, site-directed mutagenesis was used to replace specific amino acids suspected to be involved in the binding of the flavin or pyridine nucleotide cofactors and thus important for the catalytic function of the flavin domain. Each mutant flavin domain protein was expressed in Escherichia coli and analyzed for NADPH: ferricyanide reductase activity. The effect of each amino acid substitution upon the activity of the complete nitrate reductase reaction was also examined by transforming each manipulated gene into a nit-3 null mutant of N. crassa. Our results identify amino acid residues which are critical for function of the flavin domain of nitrate reductase and appear to be important for the binding of the flavin or the pyridine nucleotide cofactors.  相似文献   

17.
Nitrate reductase of Neurospora crassa is a complex multi-redox protein composed of two identical subunits, each of which contains three distinct domains, an amino-terminal domain that contains a molybdopterin cofactor, a central heme-containing domain, and a carboxy-terminal domain which binds a flavin and a pyridine nucleotide cofactor. The flavin domain of nitrate reductase appears to have structural and functional similarity to ferredoxin NADPH reductase (FNR). Using the crystal structure of FNR and amino acid identities in numerous nitrate reductases as guides, site-directed mutagenesis was used to replace specific amino acids suspected to be involved in the binding of the flavin or pyridine nucleotide cofactors and thus important for the catalytic function of the flavin domain. Each mutant flavin domain protein was expressed in Escherichia coli and analyzed for NADPH: ferricyanide reductase activity. The effect of each amino acid substitution upon the activity of the complete nitrate reductase reaction was also examined by transforming each manipulated gene into a nit-3 ? null mutant of N. crassa. Our results identify amino acid residues which are critical for function of the flavin domain of nitrate reductase and appear to be important for the binding of the flavin or the pyridine nucleotide cofactors.  相似文献   

18.
Bacillus megaterium cytochrome P-450BM-3 and its two functional domains, the heme and flavin domains, have been purified and characterized using an Escherichia coli expression system. Recombinant P-450BM-3 behaves both spectrally and enzymatically the same as the enzyme produced from the natural host, B. megaterium, and another E. coli system recently described (Bouddupalli, S. S., Estabrook, R. W., and Peterson, J. A. (1990) J. Biol. Chem. 265, 4233-4239). Reduction of the flavins in P-450BM-3 domain with NADPH appears to be very similar to microsomal P-450 reductases where two reducing equivalents are consumed to fully reduce the FMN while the FAD is converted to the semiquinone in an one electron reduction. NADPH reduction of the heme occurs only in the presence of substrate suggesting, by analogy with the cytochrome P-450CAM system, a possible increase in iron redox potential of the heme upon substrate binding which facilitates electron transfer from the flavins to the heme. The flavin domain retains a high level of cytochrome c reductase activity and also reacts with NADPH to give a 3-electron reduced product. The heme domain retains the ability to bind substrate and generates the characteristic 450-nm absorption band upon reduction in the presence of CO. The heme domain has been crystallized and a preliminary set of x-ray diffraction data obtained.  相似文献   

19.
Virginiae butanolides (VBs) and IM-2 are members of Streptomyces hormones called 'butyrolactone autoregulators' which regulate the antibiotic production in Streptomyces species at nanomolar concentrations. Cell-free extract of a VB-A overproducer, Streptomyces antibioticus NF-18, is capable of catalyzing the final step of the autoregulator biosynthesis, namely, the NADPH-dependent reduction of 6-dehydroVB-A. However, physico-chemical analyses of the purified enzymatic products revealed that, in addition to the VB-type isomer [(2R,3R,6S)-enantiomer], IM-2-type isomers [(2R,3R, 6R)- and (2S,3S,6S)-enantiomers] were also produced from (+/-)-6-dehydroVB-A, suggesting the existence of several 6-dehydroVB-A reductases with respective stereoselectivities. The reductase activity of the crude extracts was separated into two activity peaks, peak I (major) and peak II (minor), by DEAE-5PW HPLC. Chiral HPLC analyses demonstrated that peak I enzyme and peak II enzyme catalyzed the production of (2R,3R,6S), (2R,3R,6R) and (2S,3S, 6S) isomers at ratios of 46:1:3.2 and 4.9:1:1.5, respectively, indicating clearly that S. antibioticus NF-18 possesses at least two 6-dehydroVB-A reductases: one much favored toward VB-A biosynthesis, the other with relaxed stereoselectivity capable of synthesizing both VB-type and IM-2-type autoregulators.  相似文献   

20.
ActVB is the NADH:flavin oxidoreductase participating in the last step of actinorhodin synthesis in Streptomyces coelicolor. It is the prototype of a whole class of flavin reductases with both sequence and functional similarities. The mechanism of reduction of free flavins by ActVB has been studied. Although ActVB was isolated with FMN bound, we have demonstrated that it is not a flavoprotein. Instead, ActVB contains only one flavin binding site, suitable for the flavin reductase activity and with a high affinity for FMN. In addition, ActVB proceeds by an ordered sequential mechanism, where NADH is the first substrate. Whereas ActVB is highly specific for NADH, it is able to catalyze the reduction of a great variety of natural and synthetic flavins, but with K(m) values ranging from 1 microm (FMN) to 69 microm (lumiflavin). We show that both the ribitol-phosphate chain and the isoalloxazine ring contribute to the protein-flavin interaction. Such properties are unique and set the ActVB family apart from the well characterized Fre flavin reductase family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号