首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
序言     
孔道春 《生命科学》2014,(11):1107-1107
<正>基因组不稳定是人体衰老、细胞癌变及其他一些疾病发生的根本原因之一。DNA代谢异常和DNA损伤应答缺陷是导致基因组不稳定的两个主要原因。DNA代谢包括DNA复制、重组和修复,它们是细胞最基本的生命活动。同时,通过亿万年的进化,细胞已进化出一套严格的DNA复制应急及损伤应答调控系统,以维持DNA序列及基因组信息的完整性。因此,阐明DNA代谢与DNA损伤应答的分子机制,不仅有重大的理论意义,也有  相似文献   

2.
东乡野生稻双元细菌人工染色体(BIBAC)文库的构建   总被引:2,自引:0,他引:2  
双元细菌人工染色体(binarybacterialartificialchromosome,BIBAC)是能直接将大片段DNA转入植物的载体,是植物基因图位克隆和构建植物基因嵌入突变体库的重要工具。该研究以东乡野生稻为材料,构建其BIBAC文库。该文库由14592个克隆组成,平均插入片段大小为65kb,覆盖率为2倍基因组。稳定性检测结果表明,东乡野生稻基因组DNA能够在BIBAC载体中稳定存在。  相似文献   

3.
DNA错配修复与癌症的发生及治疗   总被引:3,自引:0,他引:3  
DNA错配修复是细胞复制后的一种修复机制,具有维持DNA复制保真度,控制基因变异的作用。DNA错配修复缺陷使整个基因组不稳定,最终会导致肿瘤和癌症的发生。DNA错配修复系统不仅通过矫正在DNA重组和复制过程中产生的碱基错配而保持基因组的稳定,而且通过诱导DNA损伤细胞的凋亡而消除由突变细胞生长形成的癌变。错配修复缺陷细胞的抗药性也引起了癌症化疗研究方面的关注。大多数情况下,错配修复健全型细胞对肿瘤化疗药物敏感,而错配修复缺陷细胞却有较高的抗性。DNA错配修复系统通过修复和诱导细胞凋亡维护基因组稳定的功能,显示了错配修复途径在癌症生物学和分子医学中的重要性。  相似文献   

4.
芦广庆  段金志  张昱 《遗传》2016,38(2):178-179
保持基因组的完整性和稳定性对于生物体的存活是十分重要的。DNA损伤来源于多方面,主要包括内源性的生理因素(如细胞代谢产物、DNA复制错误、抗体类别转换等)和外源性因素(如UV照射、同位素辐射等)。基因组DNA一旦发生损伤,机体内的DNA损伤修复机制就会被激活。DNA被错误地修复会导致基因突变或者基因组的不稳定,包括染色体缺失、扩增以及转位,最终这些突变的细胞可能会转化为癌细胞,进而引起肿瘤的发生。  相似文献   

5.
末端脱氧核苷酸转移酶(terminal deoxynucleotidyl transferase, TdT)是聚合酶X家族中的一员,与典型的DNA聚合酶不同,TdT以恒温的无模板依赖的方式催化脱氧核糖核苷三磷酸(dNTP)聚合到寡核苷酸的3'羟基端来合成DNA。并且TdT对底物的耐受性高具有聚合修饰型dNTP的能力,如荧光修饰的dNTP、生物素修饰的dNTP,甚至人工碱基均可作为其良好底物。TdT的这些生化特性使其被广泛的应用在生物传感和核酸合成领域中,促进了许多基于核酸的工具和方法的发展,并为酶促从头合成DNA技术的发展奠定基础。介绍了TdT的性质,重点总结了它在其介导的生物检测技术、核酸的修饰技术以及酶促合成DNA技术三个方面的核心作用、目前面临的挑战以及未来研究的方向,以期促进TdT在生物传感器和核酸合成中的进一步应用。  相似文献   

6.
邹友龙  李丽莉  楼慧强 《生命科学》2014,(11):1166-1171
遗传物质的稳定传递是生命繁衍的根本。基因组DNA的精确复制和分配是遗传物质传递的基础,也是细胞周期两大最核心的生物学事件。DNA聚合酶作为催化合成DNA双链的酶,是复制过程中最重要的因子之一。尽管对这类酶的研究已有将近60年的历史,但依然是生命科学基础研究的前沿之一。真核生物中已知的DNA聚合酶有十几种,它们不仅参与正常基因组DNA合成过程,也参与DNA损伤情况下多种修复过程。如此众多的具有不同特性的DNA聚合酶在细胞内是如何分工与合作的,在正常细胞传代与环境胁迫等情况下维护基因组稳定性中的关键作用及其分子机制又是什么。更有意思的是,最近的肿瘤细胞比较基因组数据表明,多种DNA聚合酶基因突变与某些肿瘤和遗传疾病相关,从而为这些疾病致病机理研究与诊治提供了新的思路和方法。对上述DNA聚合酶相关核心问题的最新研究进展进行了综述。  相似文献   

7.
珍稀濒危树种毛红椿微卫星DNA分离及SSR反应体系优化   总被引:11,自引:0,他引:11  
本研究以江西宜丰种源毛红椿为材料,成功提取其基因组DNA。利用改良的链亲和素磁珠法亲和捕捉出毛红椿基因组微卫星DNA片断,并构建了富含微卫星的基因组文库。从构建的基因组文库中随机挑选了63个单克隆进行测序,其中50个单克隆成功测序,含有微卫星的单克隆有18个,并根据测序结果设计并合成SSR引物18对。利用所合成的引物优化SSR反应体系,对影响SSR反应的各个因子进行了探讨。确定了模板DNA浓度最适浓度为30ng;dNTP的最适浓度为0.3mmol·L-1;0.3μmol·L-1是引物在反应体系中的最合适浓度。建立了重复性好、稳定性好的SSR反应体系,为下一步进行毛红椿群体遗传结构和遗传变异研究提供了技术支持。  相似文献   

8.
RAPD条件优化及天麻基因组DNA多态性分析   总被引:7,自引:0,他引:7  
建立了RAPD扩增条件快速优化程序与方法.并应用于天麻基因组DNA扩增条件的优化及多态性的测定:获得了天麻基因组DNA的RAPD扩增优化条件和DNA指纹图谱;分析了模板DNA、引物、dNTP、Taq DNA聚合酶等的浓度和退火温度对RAPD扩增的影响.结果表明:天麻基因组DNA用引物S1扩增的片段具有更明显的多态性,这种指纹图谱更适合于天麻遗传分化研究;而用引物S12扩增的DNA指纹图谱具有更大的相似性,这种指纹图谱更适合于天麻真伪鉴别.该方法使RAPD扩增条件优化过程实现了程序化和数量化,是获得RAPD优化条件的简便快速、经济实用方法.应用该方法进行RAPD扩增,可获得图谱清晰、稳定可靠的实验结果.  相似文献   

9.
人工方法合成基因可通过DNA化学合成,这也是基因获取的手段之一,是密码子优化、蛋白质工程、代谢工程及基因组工程等方面不可缺少的技术。本文从寡核苷酸的合成开始,对短片段DNA的合成、基因长度的DNA合成、基因组长度的DNA合成、长片段及基因组水平的DNA组装、基因组DNA的移植等方面的技术和问题进行了阐述。  相似文献   

10.
基因组不稳定(genomic instability)是机体衰老的标志之一,也是儿童早老症(Hutchinson Gilford progeria syndrome, HGPS)患者细胞的典型特征。HGPS的发生与早老素(progerin)堆积密切相关,但早老素如何引起基因组不稳定尚缺乏系统性的阐述。基因组的结构稳定与DNA的正确复制、DNA损伤修复、端粒的维持和稳定以及表观遗传学修饰密切相关。本文主要讨论早老素在改变正常核纤层结构的基础上,通过影响相关通路关键蛋白质的水平或者定位,引起细胞内氧化应激增强、DNA复制应激和DNA损伤修复障碍,细胞DNA损伤增多和端粒的加速缩短,并在改变组蛋白甲基化和乙酰化方面导致基因组不稳定的机制。  相似文献   

11.
Ronald D. Snyder   《Mutation research》1988,200(1-2):193-199
DNA excision repair requires the insertion of bases into gaps in the DNA which arise during the removal of damaged sites from the chromatin. The number of bases required is dependent on the amount of damage and the patch size of repair in response to the particular type of damage. In cells in which the ability to synthesize deoxynucleoside triphosphates (dNTPs) has been compromised, repair cannot proceed to completion following doses of DNA-damaging agents which induce repair that requires greater than the steady-state level of dNTPs. Repair is thus not equally sensitive to depletion of dNTPs when measured in rapidly cycling cells with relatively high dNTP pools or in non-cycling cells with significantly smaller pools. Critical depletion of dNTPs results in the production of long-lived DNA strand breaks at repairing sites and reduction in the number of sites initiating repair. On the other hand, elevation of dNTP pools to 10–50-fold normal levels did not inhibit repair. This indicates that dNTP pool depletion but not general pool-imbalance affects DNA excision repair.  相似文献   

12.
F-box proteins are the substrate binding subunits of SCF (Skp1-Cul1-F-box protein) ubiquitin ligase complexes. Using affinity purifications and mass spectrometry, we identified RRM2 (the ribonucleotide reductase family member 2) as an interactor of the F-box protein cyclin F. Ribonucleotide reductase (RNR) catalyzes the conversion of ribonucleotides to deoxyribonucleotides (dNTPs), which are necessary for both replicative and repair DNA synthesis. We?found that, during G2, following CDK-mediated phosphorylation of Thr33, RRM2 is degraded via SCF(cyclin F) to maintain balanced dNTP pools and genome stability. After DNA damage, cyclin F is downregulated in an ATR-dependent manner to allow accumulation of RRM2. Defective elimination of cyclin F delays DNA repair and sensitizes cells to DNA damage, a phenotype that is reverted by expressing a nondegradable RRM2 mutant. In summary, we have identified a biochemical pathway that controls the abundance of dNTPs and ensures efficient DNA repair in response to genotoxic stress.  相似文献   

13.
During DNA repair, DNA polymerase β (Pol β) is a highly dynamic enzyme that is able to select the correct nucleotide opposite a templating base from a pool of four different deoxynucleoside triphosphates (dNTPs). To gain insight into nucleotide selection, we use a fluorescence resonance energy transfer (FRET)-based system to monitor movement of the Pol β fingers domain during catalysis in the presence of either correct or incorrect dNTPs. By labeling the fingers domain with ((((2-iodoacetyl)amino)ethyl)amino)naphthalene-1-sulfonic acid (IAEDANS) and the DNA substrate with Dabcyl, we are able to observe rapid fingers closing in the presence of correct dNTPs as the IAEDANS comes into contact with a Dabcyl-labeled, one-base gapped DNA. Our findings show that not only do the fingers close after binding to the correct dNTP, but that there is a second conformational change associated with a non-covalent step not previously reported for Pol β. Further analyses suggest that this conformational change corresponds to the binding of the catalytic metal into the polymerase active site. FRET studies with incorrect dNTP result in no changes in fluorescence, indicating that the fingers do not close in the presence of incorrect dNTP. Together, our results show that nucleotide selection initially occurs in an open fingers conformation and that the catalytic pathways of correct and incorrect dNTPs differ from each other. Overall, this study provides new insight into the mechanism of substrate choice by a polymerase that plays a critical role in maintaining genome stability.  相似文献   

14.
Efficiency of correct nucleotide insertion governs DNA polymerase fidelity   总被引:1,自引:0,他引:1  
DNA polymerase fidelity or specificity expresses the ability of a polymerase to select a correct nucleoside triphosphate (dNTP) from a pool of structurally similar molecules. Fidelity is quantified from the ratio of specificity constants (catalytic efficiencies) for alternate substrates (i.e. correct and incorrect dNTPs). An analysis of the efficiency of dNTP (correct and incorrect) insertion for a low fidelity mutant of DNA polymerase beta (R283A) and exonuclease-deficient DNA polymerases from five families derived from a variety of biological sources reveals that a strong correlation exists between the ability to synthesize DNA and the probability that the polymerase will make a mistake (i.e. base substitution error). Unexpectedly, this analysis indicates that the difference between low and high fidelity DNA polymerases is related to the efficiency of correct, but not incorrect, nucleotide insertion. In contrast to the loss of fidelity observed with the catalytically inefficient R283A mutant, the fidelity of another inefficient mutant of DNA polymerase beta (G274P) is not altered. Thus, although all natural low fidelity DNA polymerases are inefficient, not every inefficient DNA polymerase has low fidelity. Low fidelity polymerases appear to be an evolutionary solution to how to replicate damaged DNA or DNA repair intermediates without burdening the genome with excessive polymerase-initiated errors.  相似文献   

15.
Both the nuclear and mitochondrial DNA (mtDNA) depend on separate balanced pools of dNTPs for correct function of DNA replication and repair of DNA damage. Import of dNTPs from the cytosolic compartment to the mitochondria has been suggested to have the potential of rectifying a mitochondrial dNTP imbalance. Reduced TK2 activity has been demonstrated to result in mitochondrial dNTP imbalance and consequently mutations of mtDNA in non-dividing cells. In this study, the consequences of a reduced thymidine kinase 2 (TK2) activity were measured in proliferating HeLa cells, on both whole-cell as well as mitochondrial dNTP levels. With the exception of increased mitochondrial dCTP level no significant difference was found in cells with reduced TK2 activity. Our results suggest that import of cytosolic dNTPs in mitochondria of proliferating cells can compensate a TK2 induced imbalance of the mitochondrial dNTP pool.  相似文献   

16.
Both the nuclear and mitochondrial DNA (mtDNA) depend on separate balanced pools of dNTPs for correct function of DNA replication and repair of DNA damage. Import of dNTPs from the cytosolic compartment to the mitochondria has been suggested to have the potential of rectifying a mitochondrial dNTP imbalance. Reduced TK2 activity has been demonstrated to result in mitochondrial dNTP imbalance and consequently mutations of mtDNA in non-dividing cells. In this study, the consequences of a reduced thymidine kinase 2 (TK2) activity were measured in proliferating HeLa cells, on both whole-cell as well as mitochondrial dNTP levels. With the exception of increased mitochondrial dCTP level no significant difference was found in cells with reduced TK2 activity. Our results suggest that import of cytosolic dNTPs in mitochondria of proliferating cells can compensate a TK2 induced imbalance of the mitochondrial dNTP pool.  相似文献   

17.
Endogenous DNA damage induced by hydrolysis, reactive oxygen species and alkylation modifies DNA bases and the structure of the DNA duplex. Numerous mechanisms have evolved to protect cells from these deleterious effects. Base excision repair is the major pathway for removing base lesions. However, several mechanisms of direct base damage reversal, involving enzymes such as transferases, photolyases and oxidative demethylases, are specialized to remove certain types of photoproducts and alkylated bases. Mismatch excision repair corrects for misincorporation of bases by replicative DNA polymerases. The determination of the 3D structure and visualization of DNA repair proteins and their interactions with damaged DNA have considerably aided our understanding of the molecular basis for DNA base lesion repair and genome stability. Here, we review the structural biochemistry of base lesion recognition and initiation of one-step direct reversal (DR) of damage as well as the multistep pathways of base excision repair (BER), nucleotide incision repair (NIR) and mismatch repair (MMR).  相似文献   

18.
Base excision repair (BER) is a major DNA repair pathway employed in mammalian cells that is required to maintain genome stability, thus preventing several human diseases, such as ageing, neurodegenerative diseases and cancer. This is achieved through the repair of damaged DNA bases, sites of base loss and single strand breaks of varying complexity that are continuously induced endogenously or via exogenous mutagens. Whilst the enzymes involved in BER are now well known and characterised, the role of the co-ordination of BER enzymatic activities in the cellular response to DNA damage and the mechanisms regulating this process are only now being revealed. Post-translational modifications of BER proteins, including ubiquitylation and phosphorylation, are increasingly being identified as key processes that regulate BER. In this review we will summarise recent evidence discovering novel mechanisms that are involved in maintaining genome stability by regulation of the key BER proteins in response to DNA damage.  相似文献   

19.
The relationship between dNTP levels and DNA synthesis was investigated using alpha factor-synchronized yeast treated with the ribonucleotide reductase inhibitor hydroxyurea (HU). Although HU blocked DNA synthesis and prevented the dNTP pool expansion that normally occurs at G1/S, it did not exhaust the levels of any of the four dNTPs, which dropped to about 80% of G1 levels. When dbf4 yeast that are ts for replication initiation were allowed to preaccumulate dNTPs at 37 degrees C before being released to 25 degrees C in the presence of HU, they synthesized 0.3 genome equivalents of DNA and then arrested as dNTPs approached sub-G1 levels. Accumulation of dNTPs at G1/S was not a prerequisite for replication initiation, since dbf4 cells incubated in HU at 25 degrees C were able to replicate when subsequently switched to 37 degrees C in the absence of HU. The replication arrest mechanism was not dependent on the Mec1/Rad53 pathway, since checkpoint-deficient rad53 cells also failed to exhaust basal dNTPs when incubated in HU. The persistence of basal dNTP levels in HU-arrested cells and partial bypass of the arrest in cells that had preaccumulated dNTPs suggest that cells have a mechanism for arresting DNA chain elongation when dNTP levels are not maintained above a critical threshold.  相似文献   

20.
The interacting pathways for prevention and repair of oxidative DNA damage   总被引:22,自引:0,他引:22  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号