首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Xiong H  Capurso D  Sen S  Segal MR 《PloS one》2011,6(11):e27382
Most existing methods for sequence-based classification use exhaustive feature generation, employing, for example, all k-mer patterns. The motivation behind such (enumerative) approaches is to minimize the potential for overlooking important features. However, there are shortcomings to this strategy. First, practical constraints limit the scope of exhaustive feature generation to patterns of length ≤ k, such that potentially important, longer (> k) predictors are not considered. Second, features so generated exhibit strong dependencies, which can complicate understanding of derived classification rules. Third, and most importantly, numerous irrelevant features are created. These concerns can compromise prediction and interpretation. While remedies have been proposed, they tend to be problem-specific and not broadly applicable. Here, we develop a generally applicable methodology, and an attendant software pipeline, that is predicated on discriminatory motif finding. In addition to the traditional training and validation partitions, our framework entails a third level of data partitioning, a discovery partition. A discriminatory motif finder is used on sequences and associated class labels in the discovery partition to yield a (small) set of features. These features are then used as inputs to a classifier in the training partition. Finally, performance assessment occurs on the validation partition. Important attributes of our approach are its modularity (any discriminatory motif finder and any classifier can be deployed) and its universality (all data, including sequences that are unaligned and/or of unequal length, can be accommodated). We illustrate our approach on two nucleosome occupancy datasets and a protein solubility dataset, previously analyzed using enumerative feature generation. Our method achieves excellent performance results, with and without optimization of classifier tuning parameters. A Python pipeline implementing the approach is available at http://www.epibiostat.ucsf.edu/biostat/sen/dmfs/.  相似文献   

3.
4.
5.
6.
一种基于特征筛选的原核生物启动子判别分析方法   总被引:3,自引:3,他引:0  
启动子识别是研究基因转录调控的重要环节,但目前方法的识别正确率偏低。在深入分析原核启动子特征的基础上,提出了一种基于特征筛选的原核启动子判别分析方法,首先在启动子序列的组成特征、信号特征和结构特征中选取备选特征,为每个特征建立适当的描述模型,并对主要的保守模式采用复合模式模型;再通过模型计算对备选特征进行逐步筛选,优化特征集,将序列表示为组合特征向量;最终利用二次判别分析实现识别。对大肠杆菌和枯草杆菌实际启动子数据进行的刀切法测试验证了方法的有效性和通用性。对于大肠杆菌非编码区(70启动子,识别的平均正确率达到了85.8%,优于其它几种典型识别方法;对于大肠杆菌编码区内部)70启动子和其它几种原核启动子,平均正确率也都超过了80%。方法框架还具有良好的可扩展性,能够方便地容纳新特征,使识别性能不断提高。  相似文献   

7.
Computational methods offer great hope but limited accuracy in the prediction of functional cis‐regulatory elements; improvements are needed to enable synthetic promoter design. We applied an ensemble strategy for de novo soybean cyst nematode (SCN)‐inducible motif discovery among promoters of 18 co‐expressed soybean genes that were selected from six reported microarray studies involving a compatible soybean–SCN interaction. A total of 116 overlapping motif regions (OMRs) were discovered bioinformatically that were identified by at least four out of seven bioinformatic tools. Using synthetic promoters, the inducibility of each OMR or motif itself was evaluated by co‐localization of gain of function of an orange fluorescent protein reporter and the presence of SCN in transgenic soybean hairy roots. Among 16 OMRs detected from two experimentally confirmed SCN‐inducible promoters, 11 OMRs (i.e. 68.75%) were experimentally confirmed to be SCN‐inducible, leading to the discovery of 23 core motifs of 5‐ to 7‐bp length, of which 14 are novel in plants. We found that a combination of the three best tools (i.e. SCOPE, W‐AlignACE and Weeder) could detect all 23 core motifs. Thus, this strategy is a high‐throughput approach for de novo motif discovery in soybean and offers great potential for novel motif discovery and synthetic promoter engineering for any plant and trait in crop biotechnology.  相似文献   

8.
9.
Systematic and fully automated identification of protein sequence patterns.   总被引:4,自引:0,他引:4  
We present an efficient algorithm to systematically and automatically identify patterns in protein sequence families. The procedure is based on the Splash deterministic pattern discovery algorithm and on a framework to assess the statistical significance of patterns. We demonstrate its application to the fully automated discovery of patterns in 974 PROSITE families (the complete subset of PROSITE families which are defined by patterns and contain DR records). Splash generates patterns with better specificity and undiminished sensitivity, or vice versa, in 28% of the families; identical statistics were obtained in 48% of the families, worse statistics in 15%, and mixed behavior in the remaining 9%. In about 75% of the cases, Splash patterns identify sequence sites that overlap more than 50% with the corresponding PROSITE pattern. The procedure is sufficiently rapid to enable its use for daily curation of existing motif and profile databases. Third, our results show that the statistical significance of discovered patterns correlates well with their biological significance. The trypsin subfamily of serine proteases is used to illustrate this method's ability to exhaustively discover all motifs in a family that are statistically and biologically significant. Finally, we discuss applications of sequence patterns to multiple sequence alignment and the training of more sensitive score-based motif models, akin to the procedure used by PSI-BLAST. All results are available at httpl//www.research.ibm.com/spat/.  相似文献   

10.
Large portions of higher eukaryotic proteomes are intrinsically disordered, and abundant evidence suggests that these unstructured regions of proteins are rich in regulatory interaction interfaces. A major class of disordered interaction interfaces are the compact and degenerate modules known as short linear motifs (SLiMs). As a result of the difficulties associated with the experimental identification and validation of SLiMs, our understanding of these modules is limited, advocating the use of computational methods to focus experimental discovery. This article evaluates the use of evolutionary conservation as a discriminatory technique for motif discovery. A statistical framework is introduced to assess the significance of relatively conserved residues, quantifying the likelihood a residue will have a particular level of conservation given the conservation of the surrounding residues. The framework is expanded to assess the significance of groupings of conserved residues, a metric that forms the basis of SLiMPrints (short linear motif fingerprints), a de novo motif discovery tool. SLiMPrints identifies relatively overconstrained proximal groupings of residues within intrinsically disordered regions, indicative of putatively functional motifs. Finally, the human proteome is analysed to create a set of highly conserved putative motif instances, including a novel site on translation initiation factor eIF2A that may regulate translation through binding of eIF4E.  相似文献   

11.
12.
13.
14.
15.
16.
Nonparametric feature selection for high-dimensional data is an important and challenging problem in the fields of statistics and machine learning. Most of the existing methods for feature selection focus on parametric or additive models which may suffer from model misspecification. In this paper, we propose a new framework to perform nonparametric feature selection for both regression and classification problems. Under this framework, we learn prediction functions through empirical risk minimization over a reproducing kernel Hilbert space. The space is generated by a novel tensor product kernel, which depends on a set of parameters that determines the importance of the features. Computationally, we minimize the empirical risk with a penalty to estimate the prediction and kernel parameters simultaneously. The solution can be obtained by iteratively solving convex optimization problems. We study the theoretical property of the kernel feature space and prove the oracle selection property and Fisher consistency of our proposed method. Finally, we demonstrate the superior performance of our approach compared to existing methods via extensive simulation studies and applications to two real studies.  相似文献   

17.
Finding motifs using random projections.   总被引:19,自引:0,他引:19  
  相似文献   

18.
19.
20.
The complexity of the global organization and internal structure of motifs in higher eukaryotic organisms raises significant challenges for motif detection techniques. To achieve successful de novo motif detection, it is necessary to model the complex dependencies within and among motifs and to incorporate biological prior knowledge. In this paper, we present LOGOS, an integrated LOcal and GlObal motif Sequence model for biopolymer sequences, which provides a principled framework for developing, modularizing, extending and computing expressive motif models for complex biopolymer sequence analysis. LOGOS consists of two interacting submodels: HMDM, a local alignment model capturing biological prior knowledge and positional dependency within the motif local structure; and HMM, a global motif distribution model modeling frequencies and dependencies of motif occurrences. Model parameters can be fit using training motifs within an empirical Bayesian framework. A variational EM algorithm is developed for de novo motif detection. LOGOS improves over existing models that ignore biological priors and dependencies in motif structures and motif occurrences, and demonstrates superior performance on both semi-realistic test data and cis-regulatory sequences from yeast and Drosophila genomes with regard to sensitivity, specificity, flexibility and extensibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号