首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The partitioning of bovine trypsin and alpha-chymotrypsin--proteases of similar physico-chemical properties--in different polyethyleneglycol/sodium citrate aqueous two-phase systems was investigated. The effect of different factors such as polyethyleneglycol molecular weight, pH, tie line length, temperature and the presence of an inorganic salt on the protein partition coefficient were analysed. Both a decrease in PEG molecular weight and an increase in pH led to a higher partition coefficient for both enzymes. Aqueous two-phase systems formed by PEG of molecular weight 3350 and citrate pH 5.2 showed the best separation capability which was enhanced in presence of sodium chloride 3%. The transfer of both proteins to the top phase was associated with negative enthalpic and entropic changes.  相似文献   

2.
The partitioning of chymosin (from Aspergilus niger) and pepsin (from bovine stomach) was carried out in aqueous-two phase systems formed by polyethyleneglycol-potassium phosphate. The effects of polymer concentration, molecular mass and temperature were analysed. The partition was assayed at pH 7.0 in systems of polyethyleneglycol of molecular mass: 1450, 3350, 6000 and 8000. Both proteins showed high affinity for the polyethyleneglycol rich phase. The increase of polyethyleneglycol concentration favoured the protein transfer to the top phase, suggesting an important protein-polymer interaction. Polyethyleneglycol proved to have a stabilizing effect on the chymosin and pepsin, increasing its protein secondary structure. This finding agreed with the enhancement of the milk clotting activity by the polyethyleneglycol. The method appears to be suitable as a first step for the purification of these proteins from their natural sources.  相似文献   

3.
Changes in membrane surface properties of hepatic peroxisomes of rats under several conditions were observed by aqueous polymer two-phase systems, which contained 6% (w/w) dextran T 500, 6% (w/w) polyethyleneglycol 4000, 250 mmol sucrose/kg and various concentrations of sodium phosphate buffer. The partition of peroxisomes into the upper phase depended to a large extent on their membrane surface charge. The cross-points of peroxisomes shifted from 5.55 to 5.25 and 5.2 after the administration of clofibrate and aspirin for 2 weeks, respectively, although that of alloxan-diabetic rat peroxisomes was not altered. The hydrophobic properties of peroxisomes, examined by means of a partition containing polyethyleneglycol monostearate, were altered by diabetes and starvation, but no change occurred in rats treated with clofibrate or aspirin. In the liver of rats fed a high-fat diet, the partition of peroxisomes was the same as that of the control. These findings indicate that hypolipidemic drugs such as clofibrate and aspirin induce the proliferation of peroxisomes and lead to the alteration of the surface charge of peroxisomal membranes. Diabetes or fasting lead to an alteration mainly of the hydrophobic properties. Both changes are probably due to alteration of content and/or composition of the proteins and the phospholipids in peroxisomal membrane under the conditions used.  相似文献   

4.
Pepsin partitioning, a gastric acid protease, in aqueous two-phase systems of polyethyleneglycol/potassium phosphate, sodium citrate and ammonium sulphate was assayed using polyethylenglycol of different molecular mass. Pepsin was found to be partitioned towards the polymer-rich phase in all the systems, which suggests an important protein-polymer interaction due to the highly hydrophobic character of the protein surface exposed to the solvent. The pepsin partitioning behavior was explained according to Timasheff's preferential interaction theory. The process was driven entropically with participation of structured water around the polyethyleneglycol ethylenic chains. The best pepsin recovery was observed in the systems polyethyleneglycol molecular mass 600. These systems were chosen in order to assay the bovine stomach homogenate partition and to compare different working conditions such as the top-bottom phase volume ratio and homogenate proportions in the total system. The best purification factors were obtained with PEG600/potassium phosphate with low top-bottom volume ratio using 15% of bovine stomach homogenate in the system total mass.  相似文献   

5.
The electrostatic fields of the subunits of DNA are presented and compared with the corresponding electrostatic potentials. Differences are observed between these two properties, due to their different dependence on distance, which are of considerable interest since, whereas the potential may be used in studying the reactivity of molecules towards charged species the field can be a similar guide to attack by neutral dipolar molecules such as water. It is demonstrated, for the example of the purine and pyrimidine bases that the field may indeed be used to detect preferential hydration sites.  相似文献   

6.
采用考马斯亮蓝G250染色法测得室温下BSA在PEG/dextran双水相体系中的分配系数。以BSA在PEG/dextran体系的下相富集为目标,研究了PEG的分子量、浓度、dextran浓度以及所加入中性盐的种类与浓度、体系pH诸因素对其分配特性的影响。实验结果表明,在PEG4000/dextran体系中,采用PEG质量分数9%-dextran质量分数9%的浓度组成,同时在pH=7.0,NaC l浓度为0.2 mol.L-1或pH6.0,NaC l浓度为0.34 mol.L-1的工艺条件下萃取BSA均可达最小分配系数,其值为0.014。  相似文献   

7.
The state of aggregation and the steady-state size of mixed aggregates made of phospholipids and surfactants are both determined by the surfactant/lipid ratio in the mixed aggregates (Re). Water-soluble polymers, such as dextrans and polyethylene glycols (PEGs) of different molecular weights, induce reversible aggregation of phospholipid vesicles, mostly due to dehydration of the vesicle surface and depletion forces, and only at much higher concentrations, PEGs (but not dextran) also induce irreversible size growth of the vesicles. Here we show that the water-soluble polymers dextrans and PEGs do not affect the vesicle-micelle phase boundaries in mixtures of phosphatidylcholine and the anionic surfactant sodium cholate. By contrast, these polymers affect markedly the steady-state size of cholate-containing vesicles. As compared with pure phosphatidylcholine vesicles, the cholate-containing vesicles have a lower tendency to undergo polymer-induced aggregation, probably due to the electrostatic repulsion between the negatively charged vesicles, but a higher tendency to undergo irreversible size growth at relatively low polymer concentrations. Such irreversible size growth was observed not only for PEG but also for dextran, which in the absence of cholate is incapable of inducing vesicle size growth. These findings are consistent with the prevailing concept that the polymer-induced size growth is due to the effect of large structural fluctuations in the bilayers of deformed aggregated vesicles, the surface of which is dehydrated by the polymer. The presence of cholate in the bilayers at sufficiently high concentrations induces such fluctuations, yielding irreversible size growth within the clusters of dehydrated vesicles formed upon mixing with polymers.  相似文献   

8.
The influence of chloride salts of Na+, Rb+ and Cs+ at concentrations from 0.15 to 1.2M was studied with bovine albumin, trypsin, ovoalbumin and lysozyme partitioning in an aqueous two-phase system formed by polyethyleneglycol 1500 and potassium phosphate at pH 7.4. Monovalent cations favoured the protein transfer to the polyethyleneglycol rich phase in the following order: Rb+ > Na+ > Cs+. Structure making cations as Na+ induced a poor loss of structured water, producing little diminution of the molar partial specific volume of polyethyleneglycol, while Rb+ and Cs+, structure breaking cations, induced a significant decrease in the specific volume of the polyethylene glycol. The increase of available solution free volume in the top phase favours the protein transfer to the polyethyleneglycol rich phase. Na+ and Rb+ induced a slight decrease in the alpha helix content of the proteins, while Cs+ increased the secondary structure for all the proteins. All the cations induced a decrease in the hydrophobic surface of the proteins, this effect was more significant in the presence of Cs+.  相似文献   

9.
Preferential interaction measurements between proteins and monosodium glutamate were carried out to arrive at an understanding of the mechanism of its strong effect on tubulin stability and self-assembly into microtubules. For all proteins studied, i.e. bovine serum albumin, lysozyme, beta-lactoglobulin, and calf brain tubulin, the protein showed a large preferential hydration in the presence of monosodium glutamate. The enhancement of tubulin self-association by monosodium glutamate can be interpreted in terms of the large unfavorable free energy of interaction between the additive and the protein. Preferential interactions were also examined for lysine hydrochloride, which also gave a preferential hydration of the proteins, except for tubulin. The dependence of the preferential hydration parameter on proteins was different for the two additives, suggesting the importance of net electrostatic charges of proteins in their interaction with glutamate anions and lysinium cations. The zero preferential interaction of lysine hydrochloride with tubulin indicates an affinity of the lysine cation for the protein. Both additives increased the transition temperature of proteins. This can be understood in terms of the unfavorable free energy of interaction between the additive and the protein surface, which should be even more unfavorable when the denaturation causes an increase in the surface area.  相似文献   

10.
The preferential interactions of bovine serum albumin, lysozyme, chymotrypsinogen, ribonuclease A, and beta-lactoglobulin with polyethylene glycols (PEGs) of molecular weight 200-6,000 have been measured by dialysis equilibrium coupled with high precision densimetry. All the proteins were found to be preferentially hydrated in all the PEGs, and the magnitude of the preferential hydration increased with increasing PEG size for each protein. The change in the chemical potentials of the proteins with the addition of the PEGs had highly positive values, indicating a strong thermodynamic destabilization of the system by the PEGs. A viscosity study of the PEGs showed them to be randomly coiled polymers, as their radii of gyration were related to the molecular weight by Rg = aM0.55. The thickness of the effective shell impenetrable to PEG around protein molecules, calculated from the preferential hydration, was found to vary with PEG molecular weight in similar fashion as the PEG radius of gyration, supporting the proposal (Arakawa, T. & Timasheff, S.N., 1985a, Biochemistry 24, 6756-6762) that the preferential exclusion of PEGs from proteins is due principally to the steric exclusion of PEG from the protein domain, although favorable interactions with protein surface residues, in particular nonpolar ones, may compete with the exclusion. These thermodynamically unfavorable preferential exclusion interactions lead to the action of PEGs as precipitants, although they may destabilize protein structure at higher temperatures.  相似文献   

11.
The cooperative binding process between the antibiotic peptide polymyxin-B and negatively-charged phosphatidic acid bilayers was investigated by differential thermal analysis and completed by fluorescence polarization measurements. The sigmoidal binding curves were analyzed in terms of the interaction energy within a domain formed by polymyxin and phosphatidic acid molecules. The formation of such a heterogeneous domain structure was favoured by high concentration of external monovalent ions. The cooperativity of the binding increased while a charge-induced decrease in the phase transition temperature of the pure lipid phase was observed with increasing ion concentration at a given pH. The reduced lateral coupling within the lipid bilayer in the presence of salt ions, as demonstrated by an increase in the lipid phase transition enthalpy, was considered to facilitate the cooperative domain formation. Moreover, an increase in the cooperativity of the polymyxin binding could be observed if phosphatidic acids of smaller chain length and thus of a lowered phase transition temperature were used. By the use of chemically-modified polymyxin we were able to demonstrate the effect of electrostatic and hydrophobic interaction. Acetylated polymyxin with a reduced positive charge was used to demonstrate the pure hydrophobic effect of polymyxin binding leading to a decrease in the phosphatidic acid phase transition temperature by about 20 degrees C. The cooperativity of the binding was strongly reduced. Cleavage of the hydrophobic polymyxin tail yielded a colistinnonapeptide which caused an electrostatically-induced increase in the phosphatidic acid phase transition temperature. With unmodified polymyxin we observed the combined effects of electrostatic as well as hydrophobic interaction making this model system interesting for the understanding of lipid-protein interactions. Evidence is presented that the formation of the polymyxin-phosphatidic acid complex is a lateral phase separation phenomenon.  相似文献   

12.
The cooperative binding process between the antibiotic peptide polymyxin-B and negatively-charged phosphatidic acid bilayers was investigated by differential thermal analysis and completed by fluorescence polarization measurements. The sigmoidal binding curves were analyzed in terms of the interaction energy within a domain formed by polymyxin and phosphatidic acid molecules. The formation of such a heterogeneous domain structure was favoured by high concentration of external monovalent ions. The cooperativity of the binding increased while a charge-induced decrease in the phase transition temperature of the pure lipid phase was observed with increasing ion concentration at a given pH. The reduced lateral coupling within the lipid bilayer in the presence of salt ions, as demonstrated by an increase in the lipid phase transition enthalpy, was considered to facilitate the cooperative domain formation. Moreover, an increase in the cooperativity of the polymyxin binding could be observed if phosphatidic acids of smaller chain length and thus of a lowered phase transition temperature were used. By the use of chemically-modified polymyxin we were able to demonstrate the effect of electrostatic and hydrophobic interaction. Acetylated polymyxin with a reduced positive charge was used to demonstrate the pure hydrophobic effect of polymyxin binding leading to a decrease in the phosphatidic acid phase transition temperature by about 20°C. The cooperativity of the binding was strongly reduced. Cleavage of the hydrophobic polymyxin tail yielded a colistinnonapeptide which caused an electrostatically-induced increase in the phosphatidic acid phase transition temperature. With unmodified polymyxin we observed the combined effects of electrostatic as well as hydrophobic interaction making this model system interesting for the understanding of lipid-protein interactions. Evidence is presented that the formation of the polymyxin-phosphatidic acid complex is a lateral phase separation phenomenon.  相似文献   

13.
Aldehyde dextran sulfonate (ADS), a modified oligosaccharide polymer, was used to prepare a new matrix structure for affinity biosensors. The principal difference between the ADS matrix and similar structures developed previously results from presence of two active functional groups in the matrix, namely, aldehyde and sulfonate. These groups perform two different functions in the matrix. The aldehyde group is responsible for covalent bonding in the biomaterials, and the negatively charged sulfonate group provides electrostatic attraction of the positively charged biomolecules. By varying the ratio between the aldehyde and sulfonate groups in the matrix, one can control contributions from the two binding modes (covalent and electrostatic). A number of oligosaccharides, such as simple dextran, aldehyde dextran (AD), aldehyde dextran sulfonate (ADS) and aldehyde ethylcellulose (AEC), were used for preparation of matrix structures. The properties of the obtained matrices were analysed and compared. Surface plasmon resonance (SPR) was used as the main technique to characterize the matrix structures.  相似文献   

14.
R M Epand  M Bryszewska 《Biochemistry》1988,27(24):8776-8779
Several salts affect the temperature of the bilayer to hexagonal phase transition of phosphatidylethanolamines. Their effects are dependent on the anion as well as the cation of the salt. Salt effects on this transition can be explained by preferential hydration and ion binding. Those salts which are excluded from the solvation sphere of the membrane promote hexagonal phase formation. For example, Na2SO4 promotes preferential hydration and is a hexagonal phase promoter while NaSCN does not do this and is a bilayer stabilizer. Unlike amphiphiles and hydrocarbons, salts can shift the bilayer to hexagonal phase transition temperature without altering the cooperativity of the transition. The effect of these salts on the gel to liquid-crystal transition is opposite to their effect on the bilayer to hexagonal phase transition. We also find that MnCl2 markedly raises the gel to liquid-crystal transition temperature. This effect is due to binding of the cation to the membrane surface. The effect is reduced with MnSO4 because of preferential hydration. Our results demonstrate that the nature of the anion as well as the cation can alter the effect of salts on lipid phase transition properties. The observed effects can be explained as resulting from preferential hydration and ion binding.  相似文献   

15.
Fluorescence spectroscopy and surface-enhanced Raman spectroscopy are applied to study the interaction of the drug 9-aminoacridine (9AA) with DNA and dextran sulfate. The effect of the electrostatic interaction between the positively charged 9AA and negatively charged groups in relation to the excimer or exciplex emission is investigated. The exciplex emission of 9AA is connected to the intercalation of this drug between nucleic base residues. The importance of negative groups in this interaction is evaluated by using dextran and dextran sulfate as model polymers. The existence of negative charges seems to induce an increase of the drug concentration in the vicinity of the polymers. The role of electrostatic attraction in the 9AA dimerization is confirmed by the excimer emission of 9AA in the presence of dextran sulfate. In the case of DNA, the phosphate groups may induce the drug approach to the DNA chain, but the exciplex fluorescence emission could be due to a charge transfer between the drug and adenine-rich sequences of DNA.  相似文献   

16.
1. Trypsin and ribonuclease were filtered through dextran gel (Sephadex G-100) columns in the absence and presence of their respective substrates. In the presence of their high-molecular-weight substrates the enzymes emerged earlier from the columns. This appeared to be due to the reversible formation of specific enzyme–substrate complexes. 2. The possibility of separation of an enzyme from other proteins with similar molecular weights was demonstrated with trypsin and cytochrome c in the presence of casein.  相似文献   

17.
The native structures of many globular proteins are only weakly stabilized and form in solution ensembles of multiple conformers. The energy differences between the conformers are assumed to be small. This is the case of flexible multidomain proteins where domain motions were observed. High concentrations of inert macrosolute, which create a crowded or confined environment, can cause shifts of the distribution of the conformers of such proteins towards the more compact structures. This effect may also promote compact structures in partially folded proteins. Time-resolved dynamic non-radiative excitation energy transfer (tr-RET) is suitable for detection of either subtle or major changes in distributions of intramolecular distances in protein molecules in solutions. Two experiments were performed which demonstrated the applicability of tr-RET for detection of the effect of macrosolutes on the conformational ensembles of flexible states of protein molecules. The distribution of distances between residues 203 and 169 in the CORE domain of E. coli adenylate kinase (AK) in the denatured state was determined in the presence of high concentrations of dextran 40. A significant shift of the mean of the distribution was observed without reduction of its width. This was interpreted as a shift to compact structure without change of the degree of disorder of the chain. In a second experiment the distribution of the distance between residues 55 and 169 in AK, which spans the cleft between the CORE and the AMPbind domains, was monitored. No clear effect of high concentrations of dextran 40 was found. These experiments show the strength of the application of tr-RET in investigation of changes in the sub-states of flexible conformations of globular protein. Networks of pairs of labeled sites can be prepared and tr-RET experiments can be performed in order to search for the segments of the protein molecules, which respond to the presence of inert macromolecules in their environment.  相似文献   

18.
Adamantane-modified compounds are known to form stable complexes with beta-cyclodextrins (beta-CD) by host-guest interactions. In this study, the inclusion complex formed between beta-CD cavities and the adamantane group was evaluated for the elaboration of a cation-exchange support. The synthesis of the chromatographic supports involved three steps: (i) a polymer of beta-CD was grafted to diol-modified silica, (ii) a dextran polymer was modified by both adamantane groups and ionizable COOH functions, (iii) the dextran derivative (Ad-Dex-COOH) was bound to the chromatographic support by complexation between the adamantane groups of the dextran and beta-CD cavities of the support. The polymer immobilization on the beta-CD support was successful as the resulting support exhibited weak cation-exchange properties. The stationary phase was easy to prepare under mild conditions (aqueous media, room temperature) and was quite stable when using aqueous mobile phases. The chromatographic behaviour of model proteins was studied in isocratic elution by examining the effect of salt concentration in the buffer on retention. A mixed retention mode was found for lysozyme, revealing both electrostatic and hydrophobic interactions with the stationary phase.  相似文献   

19.
In order to better understand how the complex, densely packed, heterogeneous milieu of a cell influences enzyme kinetics, we exposed opposing reactions catalyzed by yeast alcohol dehydrogenase (YADH) to both synthetic and protein crowders ranging from 10 to 550 kDa. The results reveal that the effects from macromolecular crowding depend on the direction of the reaction. The presence of the synthetic polymers, Ficoll and dextran, decrease Vmax and Km for ethanol oxidation. In contrast, these crowders have little effect or even increase these kinetic parameters for acetaldehyde reduction. This increase in Vmax is likely due to excluded volume effects, which are partially counteracted by viscosity hindering release of the NAD+ product. Macromolecular crowding is further complicated by the presence of a depletion layer in solutions of dextran larger than YADH, which diminishes the hindrance from viscosity. The disparate effects from 25 g/L dextran or glucose compared to 25 g/L Ficoll or sucrose reveals that soft interactions must also be considered. Data from binary mixtures of glucose, dextran, and Ficoll support this “tuning” of opposing factors. While macromolecular crowding was originally proposed to influence proteins mainly through excluded volume effects, this work compliments the growing body of evidence revealing that other factors, such as preferential hydration, chemical interactions, and the presence of a depletion layer also contribute to the overall effect of crowding.  相似文献   

20.
Dextransucrase (DSR-S) from Leuconostoc mesenteroides NRRL B-512F is a glucosyltransferase that catalyzes synthesis of soluble dextran from sucrose. In the presence of efficient acceptor molecules, such as maltose, the reaction pathway is shifted toward glucooligosaccharide synthesis. Like glucosyltransferases from oral streptococci, DSR-S possesses a C-terminal glucan-binding domain composed of a series of tandem repeats. In order to determine the role of the C-terminal region of DSR-S in dextran or oligosaccharide synthesis, four DSR-S genes with deletions at the 3′ end were constructed. The results showed that the C-terminal region modulated the initial velocity of dextran synthesis but that the Km for sucrose, the optimum pH, and the activation energy were all unaffected by the deletions. The C-terminal domain modulated the rate of oligosaccharide synthesis whatever acceptor molecule was used (a good acceptor molecule such as maltose or a poor acceptor molecule such as fructose). The C-terminal domain seemed to play no role in the catalytic process in dextran and oligosaccharide synthesis. In fact, it seems that the role of the C-terminal domain of DSR-S may be to facilitate the translation of dextran and oligosaccharides from the catalytic site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号