首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 214 毫秒
1.
目的:改进现有的细胞冷冻保存方法,建立一个不含二甲基亚砜(DMSO)和血清(FBS)的高效冷冻保存方法,为细胞治疗等临床实践提供优质细胞.方法:海藻酸微囊包埋鼠胚成纤维细胞(STO细胞)后用不含DMSO和FBS的冷冻保存液进行冷冻保存.设四个对照组:添加10%DMSO和20%FBS的组、仅添加10%DMSO的组、仅添加20%FBS、DMSO和FBS均不添加组.在冷冻前后对各实验组细胞用台盼兰染色,进行细胞计数,计算细胞存活率,同时利用溴乙锭的二聚物(EthD)、钙黄绿素-AM(Calcein-AM)进行染色观察细胞的形态,且进一步验证细胞存活率;解冻复苏后用MTT法评估细胞的增殖速度和生长活力.结果:冷冻保存30天后对各组的细胞数量、细胞存活率、细胞形态和解冻复苏后细胞的生长活力进行比较发现,海藻酸微囊包埋冷冻组的细胞数、细胞存活率、细胞形态和生长活力均与添加DMSO和FBS的组之间无显著性差异,而与其它三个对照组呈显著性差异.结论:使用海藻酸微囊替代DMSO和FBS保存STO细胞,能有效的维持细胞形态、数量、存活率,同时不影响细胞的生长活力,从而建立了一个不含DMSO和FBS的高效冷冻保存方法.  相似文献   

2.
大熊猫皮肤成纤维细胞系的建立和冷冻保存   总被引:7,自引:0,他引:7  
简要介绍了大熊猫(Ailuropoda melanoleuca)皮肤成纤维细胞的建系过程和冷冻保存。在研究中,采用200IU/ml的胶原蛋白酶Ⅰ酶在4℃下解离皮肤组织。在DME/Ham’sF12和M199两种培养液中添加100Iu,ml青链霉素、5pg,ml两性霉素B、5pg/ml M-Plasmocin^TM、2mmol/L L-Glu、10μg/ml的胰岛素、40ng/ml EGF和20%(原代)或10%(传代)FBS组成培养液,分别用于细胞的贴壁培养和植块培养,均获得培养成功。用PBS添加0.4%BSA、0.1mol/L蔗糖和10%DMSO组成的冷冻保存液对细胞进行冷冻保存,解冻后获得93.258%的活率,解冻细胞再次培养能正常生长。研究结果表明,大熊猫皮肤成纤维细胞建系和冷冻保存获得成功。  相似文献   

3.
采用毛细玻璃管法对牛卵母细胞进行玻璃化冷冻保存,解冻后再进行体外受精(IVF)和早期胚胎的体外培养(IVC)。在此技术的基础上,分别对冷冻前平衡时间、解冻处理、卵丘细胞层数以及卵母细胞所处的减数分裂阶段等影响卵母细胞冷冻保存的因素进行研究,以期筛选出适合牛卵母细胞冷冻保存的方法。结果发现,处于MⅡ期卵母细胞在10%二甲基亚砜(DMSO)+10%乙二醇(EG)液(VSl)中平衡1~3min,然后进行玻璃化冷冻保存。解冻时将卵母细胞先移入VS1液中处理15s,然后移入蔗糖稀释液中。另外发现,冷冻保存时部分卵丘细胞对卵母细胞有保护作用。而减数分裂阶段不影响解冻后卵母细胞形态正常率,但对胚胎发育率有严重影响。  相似文献   

4.
细胞的冷冻保存是细胞生物学实验中重要的实验技术.长期以来,人们使用冷冻保存液重悬细胞后进行冷冻储存,但是近年来,众多研究者发现传统冷冻方案往往会导致细胞活率大幅下降和细胞功能方面受损,从而很难满足生物医学、组织再生工程、细胞移植技术等高新技术的要求.所以研究者提出利用三维海藻酸微囊包埋细胞后再进行冷冻保存,从而在保证较高细胞活率的同时维持细胞的原有功能,有效的提高细胞的冷冻保存效率.本文概述了海藻酸微囊在细胞冷冻保存过程中的研究现状,同时对其应用进行了展望,以期为后续研究工作提供参考.  相似文献   

5.
用包埋脱水法冷冻保存水稻胚性悬浮细胞。整个过程包括:胚性悬浮细胞预培养、细胞包埋、二次预培养、包埋细胞脱水、液氮冰冻,细胞解冻和冷冻细胞恢复培养。结果表明,在细胞水分含量为25.17%和蔗糖浓度依次递增以及第2次预培养34d的存活率最好。在培养基中加2.5g·L^-1活性炭有利于细胞的恢复生长。细胞恢复培养后,能再产生愈伤组织,但生长变慢,有约5d的滞后期。  相似文献   

6.
乙二醇(ETG)和1,2-丙二醇(PROH)具有高细胞渗透性和低毒性特点,常被用于人及多种哺乳动物早期胚胎冷冻保存。为了比较ETG和PROH对小鼠2-细胞胚的冷冻保护效果,本试验分别采用这两种冷冻保护剂,对小鼠2-细胞胚进行冷冻保存,并采用冻后体外培养和囊胚移植进行冷冻效果检测。结果表明,PROH组胚胎解冻后胚胎存活率与ETG组无显著差异,但PROH组4-细胞胚发育率和囊胚发育率显著高于ETG组(82.7%vs.64.6%,61.2%vs.29.1%,P〈0.01)。囊胚移植结果表明,2-细胞胚胎冻存后能够发育为正常的后代,PROH组和ETG组的囊胚移植后妊娠产仔率无统计学差异(P〉0.05),但均显著低于对照组(P〈0.05)。为了分析两组胚胎冻存后损伤情况,埘解冻后的胚胎细胞微丝进行检测,结果显示ETG组微丝受损的胚胎数高于PROH组。本研究结果证明采用PROH作为冷冻保护剂冷冻保存小鼠2-细胞胚的冻存效果优于ETG[动物学报54(6):1098—1105,2008]。  相似文献   

7.
微囊化基因工程细胞移植治疗肿瘤是一种新兴的肿瘤治疗方法,如果将此技术应用到临床研究,就需要制备大量的细胞活性良好、重组蛋白表达量高的生物微胶囊。体外培养和冷冻保存是生物微胶囊制备过程中两个重要的环节,因此需要考察体外培养和冷冻保存对微囊化重组基因细胞生长和蛋白表达的影响。以重组CHO细胞为模型,考察了体外培养时间和冷冻保存对微囊化细胞在动物体内生长和内皮抑素表达的影响及体外培养时间对微囊化细胞冷冻保存的影响。结果表明:体外培养时间对微囊化细胞在动物体内生长、内皮抑素表达和微囊稳定性具有较大的影响,体外不培养和培养4d的微囊化细胞在小鼠腹腔内生长良好、内皮抑素表达量高,并且微囊稳定性好,而体外培养8d的微囊化细胞在移植后的第26天破裂。体外培养时间对微囊化细胞冷冻保存也具有较大的影响,体外培养4d和8d的微囊化细胞在液氮中冷冻保存40d,复苏后细胞生长良好、内皮抑素表达量高,而冻存前未经过体外培养的微囊化细胞,复苏后细胞几乎全部死亡。综上所述,生物微胶囊在体外比较适宜的培养时间为4d。并且冷冻保存对微囊化细胞在动物体内生长、内皮抑素表达和微囊稳定性没有显著的影响。  相似文献   

8.
为研究红藻糖苷对超低温冻存微藻细胞的保护作用,研究将3种不同的微藻置于含10% DMSO和不同浓度红藻糖苷的冻存液中,冻存并解冻后,以流式细胞仪检测细胞存活率,测定复养后藻株的生长曲线及相关生理参数。结果显示,由于冷冻损伤,冻存后各种藻细胞的生长速率、细胞密度及生理指标都显著性下降,而红藻糖苷协同DMSO能够显著增加细胞的存活率,尤其15%红藻糖苷能将紫球藻存活率提升20%(P0.05);生长曲线得到明显改善;且对PSII最大光能转化效率也有显著性提高(P0.05)。总体结果来看,红藻糖苷对超低温冻存微藻,特别是紫球藻具有明显的保护作用,且效果强于蔗糖。  相似文献   

9.
10.
目的探讨补骨脂素对人膀胱癌T24细胞存活率、细胞周期、细胞凋亡和迁移的影响及其分子机制。 方法分别用细胞培养液、3‰二甲基亚砜(DMSO)和不同浓度(10、30、50、100 μg/mL)补骨脂素处理膀胱癌细胞分成对照组、DMSO组和补骨脂素组,CCK-8检测细胞存活率。流式细胞术检测细胞周期和细胞凋亡。划痕实验检测划痕愈合率。RT-qPCR法检测磷脂酰肌醇3激酶(PI3K)和蛋白激酶B (AKT) mRNA表达水平、Western blot法检测PI3K和AKT蛋白的表达及磷酸化情况。多组间比较采用单因素方差分析,组间两两比较采用LSD-t检验。 结果与DMSO组比较,除10 μg/mL补骨脂素作用24 h外,其余浓度补骨脂素作用不同时间的细胞存活率随着补骨脂素浓度增高、作用时间延长而逐渐降低(P < 0.05)。与DMSO组比较,30、100 μg/mL补骨脂素干预24 h后,G1期细胞比例增多,G2/M期比例减少,细胞凋亡率[(9.16±0.97)%、(15.45±1.57)%比(1.02±0.36)%]升高,划痕愈合率[24 h:(45.00±3.44)%、(27.60±2.21)%比(66.10±2.61)%,48 h:(70.00 ± 3.40)%、(45.17±2.44)%比(85.17±3.85)%]降低,PI3K、AKT mRNA表达以及PI3K、AKT蛋白表达水平和磷酸化水平均降低(P均< 0.05)。 结论补骨脂素降低膀胱癌细胞存活率、阻滞细胞周期、诱导细胞凋亡和抑制细胞迁移,其机制可能与下调PI3K、AKT mRNA、蛋白表达及磷酸化水平有关。  相似文献   

11.
Background aimsThe therapeutic potential of human mesenchymal stromal cells (MSCs) has generated considerable interest in a wide variety of areas. MSC banking is feasible, but the optimal technique of cryopreservation remains to be determined.MethodsTo reduce dimethyl sulfoxide (DMSO) concentration in cryopreservation medium, DMSO was replaced with sucrose or trehalose. To increase cell survival and proliferation rates after thawing and to eliminate the need for fetal bovine serum (FBS), neuropeptides of the vasoactive intestinal peptide/glucose-dependent insulinotropic peptide/pituitary adenylate cyclase activating polypeptide family were added to the cryopreservation medium. Cell survival was analyzed by a trypan blue dye exclusion assay. Cell proliferation of cryopreserved MSCs was determined after 7 days of culture.ResultsNo significant differences in cell survival rates were detected between cryopreservation solutions with 5% and 10% DMSO, independently of the addition of trehalose or sucrose. Cell proliferation rates tended to be highest when MSCs were frozen in 5% DMSO + trehalose. FBS could be replaced by human albumin (HA) without loss in cell survival and proliferation potential. With FBS, the addition of neuropeptides could increase cell survival and proliferation rates. Without FBS or HA, cell survival and proliferation rates in the presence of neuropeptides were comparable to rates achieved with FBS or HA.ConclusionsClassic cryopreservation with 10% DMSO could be replaced by 5% DMSO + 30 mmol/L trehalose. FBS could be replaced by HA or neuropeptides without loss in cell survival and proliferation potential. The addition of neuropeptides in the cryopreservation medium containing FBS could increase the cell proliferation rate and consequently cellular output.  相似文献   

12.
Cryopreservation of primordial germ cells (PGCs) is a better alternative for the conservation of the diploid genome in fish until embryo cryopreservation is achieved. A good cryopreservation protocol must guarantee high survival rates but also absence of genetic damage. In this study, a cell toxicity test using several internal and external cryoprotectants was carried out. The best combination of cryoprotectants (DMSO 5 mol/L, ethylene glicol (EG) 1 mol/L, polyvinyl pyrrolidone (PVP) 4%) was used with and without antifreeze proteins (AFPs) at two different concentrations (10 mg/mL and 20 mg/mL) for cryopreservation trials. Different cryopreservation methods were used with single PGCs, genital ridges, and whole zebrafish embryos using cryovials, 0.5 mL straws, microcapsules, and microdrops. All embryos were obtained from the vasa EGFP zf45 transgenic line and viability was evaluated using trypan blue. High cell viability rates after cryopreservation in 0.5 mL straws were obtained (around 90%) and a decrease in viability was only observed when cells were cryopreserved in microcapsules and when AFP at 20 mg/mL was added to the freezing media. Genetic damage was determined by comet assay and was compared in cells cryopreserved in 0.5 mL straws and microcapsules (lowest viability rate). There were significantly more DNA strand breaks after cryopreservation in the cells cryopreserved without cryoprotectants and in those cryopreserved in microcapsules. Genetic damage in the cells cryopreserved with cryoprotectants in 0.5 mL straws was similar to fresh control samples, regardless of the concentration of AFP used. The decrease in PGC viability with the addition of AFP 20 mg/mL did not correlate with an increase in DNA damage. This study reported a successful method for zebrafish PGC cryopreservation that not only guarantees high cell survival but also the absence of DNA damage.  相似文献   

13.
The major challenge in developing cryopreservation protocols for microencapsulated cells is that the relatively large size (300-400 microm) and the fragile semipermeable membrane of microcapsules makes them particularly prone to cryodamage. Rapid-cooling cryopreservation protocols with high DMSO concentrations (3.5M, 25% v/v) resulted in low post-thaw cell viability (<10%), which did not improve with higher concentrations (4.5M, 32% v/v) and longer exposure to DMSO, even though the majority of microcapsules (60-80%) remained intact. Subsequent investigations of slow cooling with a range of DMSO and EG concentrations resulted in a much higher post-thaw cell viability (80-85%), with the majority of the microcapsules remaining intact ( approximately 60%) when DMSO was used at a concentration of 2.8M (20% v/v) and EG at a concentration of 2.7M (15% v/v). The presence of 0.25M sucrose significantly improved post-thaw cell viability upon slow cooling with 2.8M (20% v/v) DMSO, although it had no effect on microcapsule integrity. Multistep exposure and removal of sucrose did not significantly improve either post-thaw cell viability or microcapsule integrity, compared to a single-step protocol. Ficoll 20% (w/v) also did not significantly improve post-thaw cell viability and microcapsule integrity. Hence, the optimal condition for microcapsule cryopreservation developed in this study is slow cooling with 2.8M (20% v/v) DMSO and 0.25M sucrose.  相似文献   

14.
Significant cell damage occurs during cryopreservation resulting in a decreased number of viable and functional cells post-thawing. Recent studies have correlated the unsuccessful outcome of regenerative therapies with poor cell viability after cryopreservation. Cell damage from ice recrystallization during freeze-thawing is one cause of decreased viability after cryopreservation. We have assessed the ability of two C-AFGPs that are potent inhibitors of ice recrystallization to increase cell viability after cryopreservation. Our results indicate that a 1-1.5 mg/mL (0.5-0.8 mM) solution of C-AFGP 1 is an excellent alternative to a 2.5% DMSO solution for the cryopreservation of human embryonic liver cells.  相似文献   

15.
Rat hepatocytes were cryopreserved in hormonally-defined medium (HDM) containing either fetal bovine serum (FBS), glycerol, dimethyl sulfoxide (DMSO), sucrose or a mixture of these as a cryoprotectant. The best survival was with 10% (v/v) DMSO containing 30% (v/v) FBS using 5 x 10(5) hepatocytes ml(-1) at -70 degrees C for 5 d on type I collagen-coated dishes. After thawing, the cell viability was 81% determined by the MTT-test. The cryopreserved hepatocytes had the capacity of albumin synthesis similar to hepatocytes without cryopreservation. This result shows that cryopreservation of rat hepatocyte can be used for the evaluation of hepatic functions.  相似文献   

16.
A study of alginate lyase was carried out to determine if this enzyme could be used to remove alginate present in the core of alginate/poly-L-lysine (AG/PLL) microcapsules in order to maximize cell growth and colonization. A complete kinetic study was undertaken, which indicated an optimal activity of the enzyme at pH 7-8, 50 degrees C, in the presence of Ca2+. The buffer, not the ionic strength, influenced the alginate degradation rate. Alginate lyase was also shown to be active on gelled forms of alginate, as well as on the AG/PLL complex constituting the membrane of microcapsules. Batch cultures of CHO cells in the presence of alginate showed a decrease of the growth rate by a factor of 2, although the main metabolic flux rates were not modified. The addition of alginate lyase to cell culture medium increased the doubling time 5-7-fold and decreased the protein production rate, although cell viability was not affected. The addition of enzyme to medium containing alginate did not improve growth conditions. This suggests that alginate lyase is probably not suitable for hydrolysis of microcapsules in the presence of cells, in order to achieve high cell density and high productivity. However, the high activity may be useful for releasing cells from alginate beads or AG/PLL microcapsules.  相似文献   

17.
The aim of this study is to investigate the feasibility of using well defined, serum‐free freezing solutions with a reduced level of dimethylsulfoxide (DMSO) of 7.5, 5, and 2.5% (v/v) in the combination with polyethylene glycol (PEG) or trehalose to cryopreserve human bone marrow‐derived mesenchymal stem cells (hBMSCs), a main source of stem cells for cell therapy and tissue engineering. The standard laboratory freezing protocol of around 1°C/min was used in the experiments. The efficiency of 1,2‐propandiol on cryopreservation of hBMSCs was explored. We measured the post‐thawing cell viability and early apoptotic behaviors, cell metabolic activities, and growth dynamics. Cell morphology and osteogenic, adipogenic and chondrogenic differentiation capability were also tested after cryopreservation. The results showed that post‐thawing viability of hBMSCs in 7.5% DMSO (v/v), 2.5% PEG (w/v), and 2% bovine serum albumin (BSA) (w/v) was comparable with that obtained in conventional 10% DMSO, that is, 82.9 ± 4.3% and 82.7 ± 3.7%, respectively. In addition, 5% DMSO (v/v) with 5% PEG (w/v) and 7.5% 1,2‐propandiol (v/v) with 2.5% PEG (w/v) can provide good protection to hBMSCs when 2% albumin (w/v) is present. Enhanced cell viability was observed with the addition of albumin to all tested freezing solutions. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

18.
Primary rat hepatocytes were cryopreserved in hormonally-defined medium (HDM) containing 40% (v/v) fetal bovine serum (FBS) and 10% (v/v) dimethyl sulfoxide (DMSO) in liquid N2 for 6 months. After thawing, the cells were immobilized using 2% (w/v) alginate and 0.5% (w/v) chitosan solutions. The capacities of ammonia removal and urea synthesis of the immobilized-thawed hepatocytes were similar to those of immobilized hepatocytes without cryopreservation. This result shows that immobilized hepatocytes after cryopreservation are useful for the development of a bioartificial liver system.  相似文献   

19.
After thawing cells, previously cryopreserved in the presence of dimethyl sulfoxide (DMSO), a decrease in their viability and increase in unscheduled DNA synthesis was observed. In 7 days, these parameters restored to the control level. Cryopreservation without DMSO resulted in the decrease in both cell viability and replicative and unscheduled DNA synthesis. In 14 days, these characteristics were seen to return to the normal level. Cryopreservation of cells without DMSO and their preservation in liquid nitrogen induced the frequency of chromosomal aberrations, mostly chromosomal breaks. The frequency of chromosomal aberrations increased with the duration of cell preservation in liquid nitrogen. The normal level was achieved following 7 days after cell thawing. Cells treated with DMSO only (without cryopreservation) display an increased number of chromosomal and chromatid breaks and translocations. Nonrandom distribution of chromosomal aberrations was observed, with particular chromosomes being involved in the appearance of dicentrics and translocations. The data obtained indicate that cryoprotective activity of DMSO is probably associated with the cell repair systems. The detected antimutagenic and mutagenic activity of DMSO may presumably reflect various conditions for its interaction with cells (with or without cryopreservation), as well as it may be specific for the muntjac cell line used in the present work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号