首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chenopodium murale plants, induced to flower by 5 days of continuous light, produced 43% more ethylene than vegetative plants kept under short days (16 h darkness, 8 h light). The 1-aminocyclopropane-1-carboxylic acid (ACC)-induced ethylene production, using saturating ACC concentration (10 mol·m−3) was also 55% higher in induced plants. Their ACC and N-malonyl-ACC (MACC) levels were also higher, the former increasing by 56% in both shoots and roots, the latter by 288% and 108% in shoots and roots, respectively. Administration of labeled [2,3-14C]ACC produced a very similar relative content of ACC and MACC in both treatments. The only process influenced by flower induction was ACC conversion to ethylene. Induced plants converted 66% more ACC than the vegetative ones. The effects of photoperiod on ethylene formation and metabolism in a long-day plant (LDP)C. murale and a short-day plant (SDP)C. rubrum are compared. Ethylene formation seems to be under photoperiodic control in both species, but its role in flower induction remains obscure.  相似文献   

2.
The content of endogenous auxins was examined in apical buds ofChenopodium rubrum plants induced by a photoperiodic cycle of 16h darkness and 8h light followed by a dark period of various duration so as to correspond with either maximal or minimal flowering response in the endogenous rhythm in capacity to flower initiated by the photoperiodic treatment. Apical buds of potentially generative plants contained less auxins than apical buds of plants which remained in the vegetative state. Apical buds from plants treated with kinetin (1. 10-3 M) and therefore remaining in the vegetative state showed an auxin level comparable to that of untreated plants exhibiting minimal flowering response irrespective of the duration of the second dark period. Plants cultivated on a sucrose solution (0.6 M) during the second dark period became generative even at the normal minimum of flowering. The auxin content of the apical buds was low, similarly as in untreated plants induced for a period leading to maximal flowering response. On the other hand, apical buds from plants grown on sucrose solution during a dark period leading to the manifestation of maximal flowering response showed a relatively high auxin content comparable to that found in untreated plants which had obtained a more extended induction by three photoperiodic cycles. The results are discussed with respect to the possible role of endogenous auxins in the regulation of the changes in growth correlations occurring in the shoot apex during photoperiodic induction and in the expression of the competence to flower.  相似文献   

3.
Diurnal Fluctuations in Ethylene Formation in Chenopodium rubrum   总被引:2,自引:1,他引:1       下载免费PDF全文
Ethylene formation was studied in 5- to 6-d-old Chenopodium rubrum seedlings under the following light regimes: continuous light (CL), continuous darkness (CD), and alternating light/darkness (12 h of each). No significant regular oscillations in ethylene formation were found in either the CL or CD groups. In the light/dark regime, pronounced diurnal fluctuations in ethylene formation were observed. Activity of 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase was transiently increased on transfer from light to dark and vice versa. In CL, ACC oxidase activity did not change significantly, whereas in CD, it decreased continuously after the initial increase. The in vivo levels of ACC and N-malonyl-ACC (MACC) were constant for the first few hours of darkness, then decreased dramatically, but increased again in the light. In constant darkness, the level of ACC displayed endogenous rhythm, with minimum values at h 12 and 44, and a maximum value at h 32 to 36. The level of MACC in both shoots and roots decreased in the CD group until h 12, and then remained constant until h 30 before decreasing continuously. We conclude that the photoperiodic regime affects both ACC and MACC levels, as well as the conversion of ACC to ethylene. Correlation of the described changes in ethylene formation to photoperiodic flower induction is discussed.  相似文献   

4.
The apical meristem of the short‐day plant Chenopodium rubrum responds to photoperiodic flower induction with specific changes of pH and Ca2+ patterning immediately after the inductive dark span. The red–far‐red reversibility of the pH and Ca2+ patterning in response to night break treatments was measured in order to distinguish between the effect of the prolonged dark span per se and the specific effect of photoperiodic flower induction. In addition, the pH and Ca2+ patterning in C. rubrum was compared with the long‐day plant Chenopodium murale. The pH was visualized using the fluorescent probe carboxy SNARF‐1. Calcium ion concentrations were studied using a combination of Ca2+‐probes Fluo‐3 and Fura Red. It was observed that the specific changes in pH and Ca2+ patterning at the apical meristem of C. rubrum were abolished by the red‐light break. This effect was fully reversed with a subsequent single far‐red treatment. These observations infer the influence of phytochrome on both pH and Ca2+ patterning. Changes in pH and Ca2+ patterning upon flower induction were observed in both long‐day and short‐day plants. These results support the hypothesis that changes of pH and [Ca2+] in cells of the apical meristem are part of the pathway in signal transduction triggering flower initiation.  相似文献   

5.
Peak levels of 1-aminocyclopropane-l-carboxylic acid (ACC) in flower parts of ageing carnations (Dianthus caryophyllus L. cv Scanea 3C) were detected 6 to 9 days after flower opening. The ethylene climacteric and the first visible sign of wilting was observed 7 days after opening. The concentration of conjugated ACC in these same tissues peaked at day three with reduction of 70% by day 4. From day 5 to day 9 all parts followed a diurnal pattern of increasing in conjugate levels 1 day and decreasing the next. Concentrations of conjugated ACC were significantly higher than those of ACC in all ageing parts. Preclimacteric petals treated with ACC or 1-(malonylamino)-cycloprane-1-carboxylic acid (MACC), started to senesce 30 to 36 hours after treatment. When petals were treated with MACC plus by 0.1 millimolar aminoethyoxyvinylglycine, premature senescence was induced, while ethylene production was suppressed relative to MACC-treated petals. Petals treated with MACC and silver complex produced ethylene, but did not senesce. The MACC-induced ethylene was inhibited by the addition of 1.0 millimolar CoC12. These results demonstrate MACC-induced senescence in preclimacteric petals. The patterns of ACC and MACC detected in the flower parts support the view that an individual part probably does not export an ethylene precursor to the remainder of the flower inducing senescence.  相似文献   

6.
At a concentration of 17 µmol·L–1, paclobutrazol (PP), a triazole plant growth retardant, effectively reduced the elongation and increased the thickness of hypocotyls in 6-day-old Phaseolus vulgaris L. cv. Juliska seedlings, both in the light and in the dark. PP treatment did not increase the cell number in transverse sections of hypocotyls. The diameter of hypocotyls was uniform from the zone of intensive elongation along the whole hypocotyl in etiolated plants, but those grown in the light exhibited an additional lateral expansion at the base. Ethylene evolution was not reduced by PP in etiolated hypocotyls, and did not differ significantly in the elongating apical and fully grown basal zones. PP reduced the ethylene release by the growing zones in green hypocotyls, but not in the basal parts, which resulted in an increasing ethylene gradient towards the hypocotyl base. The level of 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor of ethylene, was much higher in retardant-treated hypocotyls than in the controls, which was due in part to the reduced malonylation. The swelling of the hypocotyl bases could be eliminated by inhibitors of ethylene biosynthesis or action, or could be induced by 10 µmol·L–1ACC in control plants in the light. None of these treatments had a significant effect on the lateral expansion of hypocotyls in etiolated seedlings. PP treatment induced a similar effect to that of white light in etiolated seedlings, and amplified the effect of light in green plants with respect to the ACC distribution, and consequently, the ethylene production in the hypocotyls of 6-day-old bean seedlings. It can be concluded that the lateral expansion of hypocotyl bases in PP-treated green plants is controlled by ethylene.  相似文献   

7.
In excised wheat (Triticum aestivum L.) leaves, water-deficit stress resulted in a rapid increase, followed by a decrease, in ethylene production rates and in the levels of 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor of ethylene. However, the level of N-malonyl-ACC (MACC), the major metabolite of ACC, increased gradually, then leveled off. This increase in MACC was much greater than the decrease in ACC level. The MACC levels were positively correlated with severity of water stress. Once established, the MACC levels did not decrease even after the stressed tissues were rehydrated. Administration of labeled ACC and MACC showed that the conjugation of ACC to MACC was essentially irreversible. Repeated wilting treatments following the first wilting and rehydration cycle resulted in no further increase in ethylene production and in the levels of ACC and MACC. However, when benzyladenine was supplied during the preceding rehydration process, subsequent wilting treatment resulted in a rise in MACC level and a rapid rise followed by a decline in ethylene production rates and in the level of ACC. The magnitude of these increases was, however, smaller in these rewilted tissues than that observed in the first wilting treatment. Since MACC accumulates with water stress and is not appreciably metabolized, the MACC level is a good indicator of the stress history in the detached leaves used.  相似文献   

8.
The results of different photoperiodic treatments preventing flowering and representing the control vegetative treatments in the studies of floral induction and differentiation were studied inChenopodium rubrum seedlings. A fully vegetative growth pattern of the meristem was maintained only in continuous light or after a photoperiodic treatment which consisted in a 15 min light break of the 8 h dark periods which themselves are a threshold for flowering inChenopodium. Light breaks applied to 10 h and longer dark periods did not prevent the changes resembling the early events of transition to flowering. Disappearance of zonal pattern, stimulation of apical growth, precocious initiation of leaf primordia and weakening of apical dominance have been observed. Flower formation did not follow. This work was supported by a grant from the Scientific Research Fund of SR Serbia.  相似文献   

9.
A method for the quantitation of 1-(malonylamino)cyclopropane-1-carboxylic acid (MACC), a conjugated form of 1-aminocyclopropane-1-carboxylic acid (ACC), in plants is described. [2,2,3,3-2H4]MACC has been used as an internal standard for selected ion monitoring/isotope dilution quantitation of MACC in wheat seedlings and in tomato leaves. This method is compared with a widely-used two step indirect assay for MACC, which is based upon hydrolysis of MACC to ACC and conversion of ACC by hypochlorite reagent to ethylene which is subsequently quantified by gas chromatography.  相似文献   

10.
The growth changes of cotyledons, leaves, hypocotyls and roots due to photoperiodic induction in short day plantChenopodium rubrum were investigated in relation to flowering. Six-day old plants were induced by photoperiods with a different number of dark hours. We found that the degree of inhibition which occurred during induction in the growth of leaves, cotyledons and roots similarly as the stimulation of hypocotyl is proportional to the length of dark period. The photoperiods with 12, 16 and 20 dark hours bring about marked inhibition of growth and at the same time induce flowering in terminal and axillary meristems. The inhibitory effect of critical period for flowering,i.e. 8 dark hours, is not apparent in all criteria used and even the flower differentiation is retarded. The photoperiods of 4 and 6 dark hours did not affect growth and were ineffective in inducing flowering even if their number has been increased. The experiments with inductive photoperiod interrupted by light break have clearly shown that growth pattern characteristic for induced plants can be evoked in purely vegetative ones. Such statement did not exclude the possible importance of growth inhibition as a modifying factor of flower differentiation. We demonstrated that the early events of flower bud differentiation are accompanied by stimulation of leaf growth. The evaluation of growth and development of axillary buds at different nodes of insertion enabled us to quantify the photoperiodic effect and to detect the effects due to differences in dark period length not exceeding 2 hours.  相似文献   

11.
Chenopodium rubrum, a short-day plant, and C. murale, a long-day plant, were grown in vitro in continuous darkness. Control C. rubrum plants exposed to continuous darkness for 15 d at cotyledonary phase, did not flower, while 80 % of plants flowered on the medium with 5 % glucose and 10 mg dm−3 GA3. Control C. murale plants exposed to continuous darkness for 10 d at the age of 4th pair of leaves, did not flower, while GA3 (1 – 5 mg dm−3) stimulated flowering up to 65 %. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Correlations within a shoot ofChenopodium rubrum L. ecotype 374 grown under continuous light or photoperiodic flower induction were studied using surgical treatments. Removal of a single pair of shoot organs had a variety of effects depending on position: significant changes in the number of leaf pair on the main axis or in axillary buds and in the height of shoot apices; or no effect on the parameters scored. Flowering was not affected by any of the treatments carried out. Decapitation brought about a significant increase in the number of leaf pairs in axillary buds and flowering was inhibited in 8- and 9-d old plants. Flowering was not affected in 21-d old plants. The role of shoot organ correlations, especially that of apical dominance, in regulation of flowering inC.rubrum is discussed.  相似文献   

13.
Peanut seeds (Arachis hypogea L. Yue-you 551) contain 50 to 100 nanomoles per gram conjugated 1-aminocyclopropanecarboxylic acid (ACC). Based on paper chromatography, paper electrophoresis, and gas chromatography-mass spectrometry, it was verified that the major ACC conjugate was N-malonyl-ACC (MACC). Germinating peanut seeds converted [2-14C]ACC to ethylene 70 times more efficiently than N-malonyl-[2-14C]ACC; when ACC was administered, most of it was metabolized to MACC. Germinating peanut seeds produced ethylene and converted l-[3,4-14C]methionine to ethylene; this ethylene biosynthesis was inhibited by aminoethoxyvinylglycine. These data indicate that MACC occurs in peanut seeds but does not serve as the source of ethylene during germination; ethylene is, however, synthesized from methionine via ACC.  相似文献   

14.
15.
21-day old plants ofChenopodium rubrum L. ecotype 374 were used. Organ relationships in the shoots were investigated by32P distribution, which indicated different organ correlations in plants grown in continuous light and in plants treated with flower-inducing and non-inducing dark periods. Dark periods were associated with a low32P distribution in young leaves and a high one in axillary buds. In the following light period the high32P distribution in axillary buds continued whereas the32P distribution in the leaves on the main axis increased and was similar to that in plants grown in continuous light. The high32P distribution in axillary buds was brought about by both, flower-inducing and non-inducing dark treatments. Decapitation resulted in a high32P distribution in buds, in continuous light an increased32P distribution was also found in leaves. These effects were not fully cancelled by IAA application. The results are discussed with respect to an assumption that decrease of apical dominance represents a step in a sequence of events leading to flowering.  相似文献   

16.
Guo L  Arteca RN  Phillips AT  Liu Y 《Plant physiology》1992,100(4):2041-2045
1-Aminocyclopropane-1-carboxylate (ACC) N-malonyltransferase converts ACC, an immediate precursor of ethylene, to the presumably inactive product malonyl-ACC (MACC). This enzyme plays a role in ethylene production by reducing the level of free ACC in plant tissue. In this study, ACC N-malonyltransferase was purified 3660-fold from etiolated mung bean (Vigna radiata) hypocotyls, with a 6% overall recovery. The final specific activity was about 83,000 nmol of MACC formed mg−1 protein h−1. The five-step purification protocol consisted of polyethylene glycol fractionation, Cibacron blue 3GA-agarose chromatography using salt gradient elution, Sephadex G-100 gel filtration, MonoQ anion-exchange chromatography, and Cibacron blue 3GA-agarose chromatography using malonyl-CoA plus ACC for elution. The molecular mass of the native enzyme determined by Sephadex G-100 chromatography was 50 ± 3 kD. Protein from the final purification step showed one major band at 55 kD after sodium dodecyl sulfate polyacrylamide gel electrophoresis, indicating that ACC N-malonyltransferase is a monomer. The mung bean ACC N-malonyltransferase has a pH optimum of 8.0, an apparent Km of 0.5 mm for ACC and 0.2 mm for malonyl-coenzyme A, and an Arrhenius activation energy of 70.29 kJ mol−1 degree−1.  相似文献   

17.
In preclimacteric apple fruits ( Malus × domestica Borkh. cv. Golden Delicious) ethylene production is controlled by the rates of 1-aminocyclopropane-1-carboxylic acid (ACC) synthesis, and by its metabolism to ethylene by the ethylene-forming enzyme and to 1-(malonylamino)cyclopropane-1-carboxylic acid (MACC) by malonyl CoA-ACC transferase. The onset of the climacteric in ethylene production is associated with an increase in the activity of the ethylene-forming enzyme in the pulp and with a rise in the activity of ACC synthase. Malonyl transferase activity is very high in the skin of immature fruit, decreases sharply before the onset of the climacteric, and remains nearly constant thereafter. More than 40% of the ACC synthesized in the skin and around 5% in the flesh, are diverted to MACC at early climacteric. At the climacteric peak there are substantial gradients in ethylene production between different portions of the tissue, the inner cortical tissues producing up to twice as much as the external tissues. This increased production is associated with, and apparently due to, increased content of ACC synthase. Less than 1% of the synthesized ACC is diverted to MACC in the flesh of climacteric apples. In contrast, the skin contains high activity of malonyl transferase, and correspondingly high levels [1000 nmol (g dry weight)−1] of MACC.  相似文献   

18.
Flowering of Chenopodium rubrum seedling plants was obtained in continuous light after application of fractions of a partially purified extract from leaves of flowering Maryland Mammoth tobacco (Nicotiana tabacum). The stage of flowal differentiation was dependent on the age of the Chenopodium plants used for the bioassay. Apices of plants treated with the extract at the age of four or seven days showed an advanced branching of the meristem or the beginning of formation of a terminal flower; treatment with the extract of plants 12 d old resulted in rapid formation of flower buds in all assay plants. Non-treated control plants kept in continuous light remained fully vegetative. The effects of the extract on flowering were associated with pronounced growth effects. Floral differentiation was preceeded by elongation of the shoot apex. Extension of all axial organs occurred, while growth of leaves, including leaf primordia, was inhibited. The pattern of growth after application of the flower-inducing substance(s) did not resemble the effects of the known phytohormones, but showed some similarities to growth changes resulting from photoperiodic induction of flowering.  相似文献   

19.
20.
Transport and metabolism of [2,3-14C] 1-aminocyclopropane-1-carboxylic acid (ACC) from roots to shoots in 4-day-old sunflower (Helianthus annuus L.) seedlings were studied. [14C]ACC was detected in, and 14C2H4 was evolved from, shoots 0.5 hours after [14C]ACC was supplied to roots. Ethylene emanation from the shoots returned to normal levels after 6 hours. The roots showed a similar pattern, although at 24 hours ethylene emanation was still slightly higher than in those plants that did not receive ACC. [14C]N-malonyl-ACC (MACC) was detected in both tissues at all times sampled. [14C]MACC levels surpassed [14C]ACC levels in the shoot at 2 hours, whereas [14C]MACC levels in the root remained below [14C]ACC levels until 6 hours, after which they were higher. Thin-layer chromatography analysis identified [14C] ACC in 1-hour shoot extracts, and [14C]MACC was identified in root tissues at 1 and 12 hours after treatment. [14C]ACC and [14C] MACC in the xylem sap of treated seedlings were identified by thin-layer chromatography. Xylem transport of [14C]ACC in treated seedlings, and transport of ACC in untreated seedlings, was confirmed by gas chromatography-mass spectrometry. Some evidence for the presence of [14C]MACC in xylem sap in [14C]ACC-treated seedlings is presented. A substantial amount of radioactivity in both ACC and MACC fractions was detected leaking from the roots over 24 hours. A second radiolabeled volatile compound was trapped in a CO2-trapping solution but not in mercuric perchlorate. Levels of this compound were highest after the peak of ACC levels and before peak MACC levels in both tissues, suggesting that an alternate pathway of ACC metabolism was operating in this system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号