首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ion-selective microelectrode measurements of molecular diffusion have provided unique information about the structural characteristics of the extracellular compartment of brain tissue. Magnetic resonance (MR) techniques can also be used to perform diffusion measurements in living tissue in situ. In MR applications, the challenge to study a particular physiological compartment lies in achieving the appropriate specificity in the experimentally-observed MR signal, and many strategies have been used to provide measurements that reflect molecular diffusion within the extracellular space. This review describes how magnetic resonance and microelectrode diffusion measurements are performed, and applications using the MR technique are summarized. Comparisons of experimental results obtained from the two techniques indicate that their use in combination may further augment what is known about extracellular space structure.  相似文献   

2.
With the development of medical imaging modalities and image processing algorithms, there arises a need for methods of their comprehensive quantitative evaluation. In particular, this concerns the algorithms for vessel tracking and segmentation in magnetic resonance angiography images. The problem can be approached by using synthetic images, where true geometry of vessels is known. This paper presents a framework for computer modeling of MRA imaging and the results of its validation. A new model incorporates blood flow simulation within MR signal computation kernel. The proposed solution is unique, especially with respect to the interface between flow and image formation processes. Furthermore it utilizes the concept of particle tracing. The particles reflect the flow of fluid they are immersed in and they are assigned magnetization vectors with temporal evolution controlled by MR physics. Such an approach ensures flexibility as the designed simulator is able to reconstruct flow profiles of any type. The proposed model is validated in a series of experiments with physical and digital flow phantoms. The synthesized 3D images contain various features (including artifacts) characteristic for the time-of-flight protocol and exhibit remarkable correlation with the data acquired in a real MR scanner. The obtained results support the primary goal of the conducted research, i.e. establishing a reference technique for a quantified validation of MR angiography image processing algorithms.  相似文献   

3.
The presence of bacteria within the pocket epithelium and underlying connective tissue in gingival biopsies from patients with periodontitis has been reported using various methods, including electron microscopy, immunohistochemistry or immunofluorescence using bacteria-specific antibodies, and fluorescent in situ hybridization (FISH) using a fluorescence-labeled oligonucleotide probe. Nevertheless, these methods are not widely used due to technical limitation or difficulties. Here a method to localize bacteria within paraffin-embedded tissues using DIG-labeled DNA probes has been introduced. The paraffin-embedded tissues are the most common form of biopsy tissues available from pathology banks. Bacteria can be detected either in a species-specific or universal manner. Bacterial signals are detected as either discrete forms (coccus, rod, fusiform, and hairy form) of bacteria or dispersed forms. The technique allows other histological information to be obtained: the epithelia, connective tissue, inflammatory infiltrates, and blood vessels are well distinguished. This method can be used to study the role of bacteria in various diseases, such as periodontitis, cancers, and inflammatory immune diseases.  相似文献   

4.
Experimental nerve imaging at 1.5-T   总被引:1,自引:0,他引:1  
Experimental lesions of the peripheral nerve system can be visualized in vivo by magnetic resonance imaging (MRI). Many studies of the rat peripheral nervous systems were performed on dedicated animal MR scanners with a high magnetic field strength for good spatial resolution. Here, we present an MR protocol to study experimental lesions of the rat nervous system with clinical 1.5-T MR scanners and commercially available coils. Using a three-sequence approach (T1-weighted imaging, fat-saturated T2-weighted imaging and fat-saturated T1-weighted imaging with Gd-DTPA in the same plane), the relevant signal changes of the lesioned nerve can be visualized and separated from other structures, e.g., blood vessels. Furthermore, we give an overview on different types of contrast agents used for peripheral nerve MR imaging and MR findings in selected experimental models of rat peripheral nerve injury.  相似文献   

5.
Resting state functional magnetic resonance imaging (fMRI) has been commonly used to measure functional connectivity between cortical regions, while diffusion tensor imaging (DTI) can be used to characterize structural connectivity of white matter tracts. In principle combining resting state fMRI and DTI data could allow characterization of structure-function relations of distributed neural networks. However, due to differences in the biophysical origins of their signals and in the tissues to which they apply, there has been no direct integration of these techniques to date. We demonstrate that MRI signal variations and power spectra in a resting state are largely comparable between gray matter and white matter, that there are temporal correlations of fMRI signals that persist over long distances within distinct white matter structures, and that neighboring intervoxel correlations of low frequency resting state signals showed distinct anisotropy in many regions. These observations suggest that MRI signal variations from within white matter in a resting state may convey similar information as their corresponding fluctuations of MRI signals in gray matter. We thus derive a local spatio-temporal correlation tensor which captures directional variations of resting-state correlations and which reveals distinct structures in both white and gray matter. This novel concept is illustrated with in vivo experiments in a resting state, which demonstrate the potential of the technique for mapping the functional structure of neural networks and for direct integration of structure-function relations in the human brain.  相似文献   

6.
目的:探讨磁共振间质淋巴造影剂Chitosan-DTPA-Gd经舌黏膜下注射后,显示颈淋巴的应用价值。方法:选取健康成年纯种新西兰大白兔12只,麻醉并仰卧位固定磁共振平扫,再于每只兔双侧舌缘中后交界处粘膜下各注射0.1 mL造影剂,注射部位按摩30秒,按摩后5、10、15、20、25、30、35、40 min行三维增强磁共振淋巴造影成像,测量增强前后不同时间颈部淋巴结的信号强度(SI),计算相对应的信号强化率(E%),采用SPSS软件进行数据的统计学分析。结果:Chitosan-DTPA-Gd于兔双侧舌缘粘膜下注射后很快吸收进入颈部淋巴引流区,淋巴结及淋巴管明显、均匀的强化,血管无显影。颈部淋巴结于注射后15 min信号强度达到峰值,并可保持一段时间,25 min后信号强化率开始明显降低,40分钟后淋巴系统显影与周围组织无差别。结论:间质磁共振淋巴造影剂Chitosan-DTPA-Gd用量小,强化效应明显,能够有效的显示颈部淋巴结形态及淋巴管走形。  相似文献   

7.
We report the development of a novel technology that enables the wireless transmission of sufficient amounts of power to implantable physiological devices. The system involves a primary unit generating the magnetic field and a secondary pickup unit deriving power from the magnetic field and a power conditioner. The inductively coupled system was able to supply a minimum of 20 mW at all locations and pickup orientations across a rat cage, although much higher power of up to 10 W could be achieved. We hypothesized that it would be possible to use this technology to record a high-fidelity ECG signal in a conscious rat. A device was constructed in which power was utilized to recharge a battery contained within a telemetry device recording ECG signal sampled at 2,000 Hz in conscious rats (200-350 g) living in their home cage. Attributes of the ECG signal (QT, QRS, and PR interval) could be obtained with a high degree of accuracy (<1 ms). ECG and heart rate changes in response to treatment with the beta blocker propranolol and the proarrhythmic alkaloid aconitine were measured. Transmitters were implanted for up to 4 mo, and the characteristic circadian variation in heart rate was recorded. Such technology allows potentially lifetime monitoring without the need for implant refurbishment. The ability to provide suitable power levels to implanted devices without concern to the orientation of the device and without causing heating provides the basis for the development of new devices to record or influence physiological signals in animals or humans over significantly longer time periods than can currently be accommodated.  相似文献   

8.
This protocol details a culture technique for neonatal mouse retina that allows the assessment and quantification of acute responses of developing blood vessels to pharmacological manipulation. The technique has proven to be a useful tool for elucidating the molecular mechanisms that underlie the guidance of tip cells in the complex scenario of the angiogenic sprouting process. This culture setting allows the acute stimulation or inhibition of cellular functions of endothelial cells in their physiological environment ex vivo. Compared with other existing techniques, such as retinal injections in animals, the explant culture described here is an easily manageable and highly flexible alternative that allows pharmacological manipulations of the developing retina vessels. The technique involves swift extraction of retina from intact eye and retinal flat mounting on a hydrophilic membrane with minimum disturbance of the tissue. The responses of tip endothelial cell sprouting activity and filopodial extension to different angiogenic and angioinhibitory factors can be evaluated within only 4 h. The whole process for the retinal explant cultures and stimulation can be completed in 10 h.  相似文献   

9.
Magnetic resonance (MR) imaging is a unique imaging modality that is gaining rapid acceptance for a variety of medical indications. Diagnostic information is obtained noninvasively, without the potential hazards of ionizing radiation. The spatial resolution and anatomic detail of MR imaging rival those of other currently available imaging methods. By gating to an electrocardiographic signal cardiac imaging is possible. Since March 1983 the authors have had experience with cardiac MR imaging in both animals and humans. Cardiac anatomy is well shown by this technique, which allows detection and characterization of intracardiac masses, congenital heart disease and anomalies of the great vessels. Myocardial infarction has been detected in both animals and humans without the use of contrast agents, and acute cardiac transplant rejection has been visualized in an animal model. Limitations of MR imaging primarily have been lengthy imaging times and the sensitivity of the images to motion. With further investigation and experience this technique may become useful for studying a wide variety of cardiovascular disorders.  相似文献   

10.
Recording of slow spontaneous fluctuations at rest using functional magnetic resonance imaging (fMRI) allows distinct long-range cortical networks to be identified. The neuronal basis of connectivity as assessed by resting-state fMRI still needs to be fully clarified, considering that these signals are an indirect measure of neuronal activity, reflecting slow local variations in de-oxyhaemoglobin concentration. Here, we combined fMRI with multifocal transcranial magnetic stimulation (TMS), a technique that allows the investigation of the causal neurophysiological interactions occurring in specific cortico-cortical connections. We investigated whether the physiological properties of parieto-frontal circuits mapped with short-latency multifocal TMS at rest may have some relationship with the resting-state fMRI measures of specific resting-state functional networks (RSNs). Results showed that the activity of fast cortico-cortical physiological interactions occurring in the millisecond range correlated selectively with the coupling of fMRI slow oscillations within the same cortical areas that form part of the dorsal attention network, i.e., the attention system believed to be involved in reorientation of attention. We conclude that resting-state fMRI ongoing slow fluctuations likely reflect the interaction of underlying physiological cortico-cortical connections.  相似文献   

11.
High-resolution proton magnetic resonance spectra of intact muscles of frog and rat were obtained with selective saturation of the water signal. The spectra consisted of the superposition of a broad component and a high-resolution portion. The line width of the former was about 5 ppm and is assumed to originate from the protons of the macromolecules in muscle. The high-resolution portion showed well-resolved signals arising from creatine phosphate, creatine, carnosine, lactate and lipids. It is suggested that this technique could be used to monitor the intracellular pH by measuring the chemical shift of carnosine and the lipid consumption due to muscular contraction. When the spectrum of 31P-NMR is prepared simultaneously, the ratio of creatine phosphate to total creatine can also be determined.  相似文献   

12.
The ability to image specific molecular targets in vivo would have significant impact in allowing earlier disease detection and in tailoring molecular therapies. One of the rate-limiting steps in the development of novel compounds as reporter probes has been the lack of cell-based, biologically relevant, high throughput screening methods. Here we describe the development and validation of magnetic resonance imaging (MRI) as a technique to rapidly screen compounds that are potential MR reporter agents for their interaction with specific cellular targets. We show that MR imaging can (1) evaluate thousands of samples simultaneously and rapidly, (2) provide exceedingly accurate measurements, and (3) provide receptor binding/internalization data as validated by radioactive assays. The technique allows the screening of libraries of peptide-nanoparticle conjugates against target cells and the identification of conjugates that may be subsequently used as reporter agents in vivo. The technology should greatly accelerate the development of target-specific or cell-specific MR contrast agents.  相似文献   

13.
To determine the initial feasibility of using magnetic resonance (MR) imaging to detect early atherosclerosis, we investigated inflammatory cells labeled with a positive contrast agent in an endothelial cell-based testing system. The human monocytic cell line THP-1 was labeled by overnight incubation with a gadolinium colloid (Gado CELLTrack) prior to determination of the in vitro release profile from T1-weighted MR images. Next, MR signals arising from both a synthetic model of THP-1/human umbilical vein endothelial cell (HUVEC) accumulation and the dynamic adhesion of THP-1 cells to activated HUVECs under flow were obtained. THP-1 cells were found to be successfully--but not optimally--labeled with gadolinium colloid, and MR images demonstrated increased signal from labeled cells in both the synthetic and dynamic THP-1/HUVEC models. The observed THP-1 contrast release profile was rapid, suggesting the need for an agent that is optimized for retention in the target cells for use in further studies. Detection of labeled THP-1 cells was accomplished with no signal enhancement from unlabeled cells. These achievements demonstrate the feasibility of targeting early atherosclerosis with MR imaging, and suggest that using an in vitro system like the one described provides a rapid, efficient, and cost-effective way to support the development and evaluation of novel MR contrast agents.  相似文献   

14.
PURPOSE. This work aims to present a preparation technique for ex-vivo MR examination of SPIO (superparamagnetic iron oxide) containing solutions or SPIO labeled cells. Accumulations of SPIO particles and labeled cells were prepared in different concentrations using agar gel phantoms. Signal extinction around accumulations of magnetic material was examined systematically by gradient echo sequences with variable echo times and spatial resolution. The correlation between local iron concentration and diameter of signal extinction in MR gradient echo images was investigated. METHODS: Resovist, (SHU 555A) was used as superparamagnetic contrast medium. Different concentrations of SPIO-containing solutions (0.75 - 15 mg Fe/10 ml) and magnetically labeled SK-Mel28 cells (25,000-1,000,000 cells/10 ml) were accommodated inside a defined volume in an agar matrix. Diameters of signal void were assessed in dependence on local iron concentration, echo time (5-25 ms) and isotropic spatial resolution (length of voxel 0.25 - 0.60 mm). Measurements were performed on a clinical MR whole body scanner (3 Tesla) using a spoiled gradient echo sequence (FLASH). RESULTS: For the present experimental conditions sensitivity to detect the magnetic label was maximized using TE 25 ms. In contrast, the area of signal cancellation was minimized using TE 5 ms and isotropic resolution of 0.25 mm. In the latter case the image indicated the area of magnetic material most precisely. Diameter of signal cancellation was a logarithmic function on local iron concentration. In the presented set-up detection of concentrations as low as 0.75 mg Fe/10 ml in SPIO-containing solution or 1.25 mg Fe/10 ml in SPIO-labeled SK-Mel28 cells was certainly possible. CONCLUSION: The proposed preparation strategy with a well defined spatial distribution of the magnetic material in an agar gel phantom produced reliable results and appears clearly superior compared to set-ups with randomly distributed material in glass tubes. The diameter of the signal extinction in gradient echo images was significantly affected by the choice of echo time and spatial resolution. The calibration of signal cancellation versus iron concentrations may be valuable to assess SPIO concentrations and possibly numbers of labeled cells under specific conditions in vitro or even in vivo.  相似文献   

15.
The yeast Arxula adeninivorans LS3 is a suitable organism for use as part of a microbial sensor. In combination with an amperometric oxygen electrode the sensor offered a possibility for the physiological characterization of this yeast. About 300-400 measurements could be carried out with a single Arxula sensor. The microbial sensor was remarkably stable for over 35 days, when kept at 37 °C during the operation time and at room temperature overnight. The physiological characteristics of Arxula adeninivorans LS3 obtained with the sensor technique were identical to the data obtained with the conventional techniques. However, the sensor technique makes it additionally possible to quantify the physiological data. So the substrates ribose, citric acid, glycerol, oil and benzoate produced signals lower than 10% in comparison to the glucose signal. Fructose, xylose, sucrose, maltose, gentianose, glucosamine, glutamic acid, tryptophan, butyric acid, lauryl acid and propionic acid reached 10-70%, galactose, alanine, glycine, lysine and methionine signals were similar to the glucose signal whereas acetic acid, ethyl alcohol, capron acid, capryl acid and caproic acid reached the highest signals up to 434%.  相似文献   

16.
Coherent Raman imaging techniques have seen a dramatic increase in activity over the past decade due to their promise to enable label-free optical imaging with high molecular specificity 1. The sensitivity of these techniques, however, is many orders of magnitude weaker than fluorescence, requiring milli-molar molecular concentrations 1,2. Here, we describe a technique that can enable the detection of weak or low concentrations of Raman-active molecules by amplifying their signal with that obtained from strong or abundant Raman scatterers. The interaction of short pulsed lasers in a biological sample generates a variety of coherent Raman scattering signals, each of which carry unique chemical information about the sample. Typically, only one of these signals, e.g. Coherent Anti-stokes Raman scattering (CARS), is used to generate an image while the others are discarded. However, when these other signals, including 3-color CARS and four-wave mixing (FWM), are collected and compared to the CARS signal, otherwise difficult to detect information can be extracted 3. For example, doubly-resonant CARS (DR-CARS) is the result of the constructive interference between two resonant signals 4. We demonstrate how tuning of the three lasers required to produce DR-CARS signals to the 2845 cm-1 CH stretch vibration in lipids and the 2120 cm-1 CD stretching vibration of a deuterated molecule (e.g. deuterated sugars, fatty acids, etc.) can be utilized to probe both Raman resonances simultaneously. Under these conditions, in addition to CARS signals from each resonance, a combined DR-CARS signal probing both is also generated. We demonstrate how detecting the difference between the DR-CARS signal and the amplifying signal from an abundant molecule''s vibration can be used to enhance the sensitivity for the weaker signal. We further demonstrate that this approach even extends to applications where both signals are generated from different molecules, such that e.g. using the strong Raman signal of a solvent can enhance the weak Raman signal of a dilute solute.  相似文献   

17.
Macrophages are key-cells in the initiation, the development and the regulation of the inflammatory response to bacterial infection. Macrophages are intensively and increasingly recruited in septic joints from the early phases of infection and the infiltration is supposed to regress once efficient removal of the pathogens is obtained. The ability to identify in vivo macrophage activity in an infected joint can therefore provide two main applications: early detection of acute synovitis and monitoring of therapy.In vivo noninvasive detection of macrophages can be performed with magnetic resonance imaging using iron nanoparticles such as ultrasmall superparamagnetic iron oxide (USPIO). After intravascular or intraarticular administration, USPIO are specifically phagocytized by activated macrophages, and, due to their magnetic properties, induce signal changes in tissues presenting macrophage infiltration. A quantitative evaluation of the infiltrate is feasible, as the area with signal loss (number of dark pixels) observed on gradient echo MR images after particles injection is correlated with the amount of iron within the tissue and therefore reflects the number of USPIO-loaded cells.We present here a protocol to perform macrophage imaging using USPIO-enhanced MR imaging in an animal model of septic arthritis, allowing an initial and longitudinal in vivo noninvasive evaluation of macrophages infiltration and an assessment of therapy action.  相似文献   

18.
The technique of proton magnetic resonance spectroscopy (1H MRS) was used as the sensitive express method for early specific detection of the apoptotic cells. The technique allows recognition of the changes in signal intensities corresponding to methylene (CH2) and methyl (CH3) protons of the mobile lipid domains (MLD) and choline, which are characteristic of apoptotic rather than of necrotic cells. A strong linear correlation between MLD content (calculated as CH2/CH3 signal intensity ratio) and the number of apoptotic cells in Namalwa or MT4 cell lines has been shown for any inducer of apoptosis used in the study. MLD content estimated by 1H MRS technique correlated significantly with apoptotic cells numbers (r = 0.992) recorded by conventional techniques. The increase in MLD content was registered as early as 60 min after the addition of etoposide coinciding with the time course of caspase-3 activation.  相似文献   

19.
Alzheimer''s disease (AD) is a progressive neurodegenerative disease that is pathologically characterized by extracellular deposition of β-amyloid peptide (Aβ) and intraneuronal accumulation of hyperphosphorylated tau protein. Because cerebrospinal fluid (CSF) is in direct contact with the extracellular space of the brain, it provides a reflection of the biochemical changes in the brain in response to pathological processes. CSF from AD patients shows a decrease in the 42 amino-acid form of Aβ (Aβ42), and increases in total tau and hyperphosphorylated tau, though the mechanisms responsible for these changes are still not fully understood. Transgenic (Tg) mouse models of AD provide an excellent opportunity to investigate how and why Aβ or tau levels in CSF change as the disease progresses. Here, we demonstrate a refined cisterna magna puncture technique for CSF sampling from the mouse. This extremely gentle sampling technique allows serial CSF samples to be obtained from the same mouse at 2-3 month intervals which greatly minimizes the confounding effect of between-mouse variability in Aβ or tau levels, making it possible to detect subtle alterations over time. In combination with Aβ and tau ELISA, this technique will be useful for studies designed to investigate the relationship between the levels of CSF Aβ42 and tau, and their metabolism in the brain in AD mouse models. Studies in Tg mice could provide important validation as to the potential of CSF Aβ or tau levels to be used as biological markers for monitoring disease progression, and to monitor the effect of therapeutic interventions. As the mice can be sacrificed and the brains can be examined for biochemical or histological changes, the mechanisms underlying the CSF changes can be better assessed. These data are likely to be informative for interpretation of human AD CSF changes.Open in a separate windowClick here to view.(49M, flv)  相似文献   

20.
A significant problem in biological motif analysis arises when the background symbol distribution is biased (e.g. high/low GC content in the case of DNA sequences). This can lead to overestimation of the amount of information encoded in a motif. A motif can be depicted as a signal using information theory (IT). We apply two concepts from IT, distortion and patterned interference (a type of noise), to model genomic and codon bias respectively. This modeling approach allows us to correct a raw signal to recover signals that are weakened by compositional bias. The corrected signal is more likely to be discriminated from a biased background by a macromolecule. We apply this correction technique to recover ribosome-binding site (RBS) signals from available sequenced and annotated prokaryotic genomes having diverse compositional biases. We observed that linear correction was sufficient for recovering signals even at the extremes of these biases. Further comparative genomics studies were made possible upon correction of these signals. We find that the average Euclidian distance between RBS signal frequency matrices of different genomes can be significantly reduced by using the correction technique. Within this reduced average distance, we can find examples of class-specific RBS signals. Our results have implications for motif-based prediction, particularly with regards to the estimation of reliable inter-genomic model parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号