首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ovulation hormone-producing caudo-dorsal cells (CDC) of Lymnaea stagnalis have three states of excitability (active, inhibited, and resting), which are related to the egg-laying cycle. Active state CDC produce a firing pattern of prolonged spiking activity (1 spike/2 s), which in the animal occurs shortly before egg laying. In preparations it is evoked as an afterdischarge upon repetitive stimulation of CDC. The afterdischarge is not synaptically driven, but rests on a pacemaking mechanism. CDC are silent in the inhibited and resting states, which follow egg laying. In these states the membrane potential is mainly dependent on [K+]0. In the active state the ratio of the K+, Na+, and Ca2+ permeabilities has changed considerably, probably resulting from an increased permeability to Na+ and Ca2+. The firing rate in the afterdischarge is dependent on the membrane potential, which is confirmed experimentally by varying [K+]0.[Na+]0 and [Ca2+]0 directly influence the firing rate. Firing stops in Na+-free saline, but is enhanced by Ca2+-free or high-Mg2+ saline. TTX does not affect firing. Relatively high concentrations of Co2+ and La3+ (2 × 10?3M) strongly inhibit CDC. Regular firing can be changed into bursting by various means, such as high K+ or addition of 1 mM Ba2+. Bursting normally occurs at the beginning of the afterdischarge. Postburst hyperpolarizations are reduced in Ca2+-free saline and by low Co2+ (10?4-5 10?4M). Active CDC are driven by a pacemaking mechanism constituted by a voltage-dependent Na+/Ca2+ channel and a Ca2+-dependent K+ channel, thus resembling that of bursting pacemakers. The pacemaking mechanism is inactive in the resting and inhibited state.  相似文献   

2.
Summary On the basis of a model presented in a previous paper (Hook and Hildebrand, 1979) the influence of external cation concentrations [K+]0, [Ca2+]0 and of membrane voltage Vm (i.e. the actual potential difference between the two membrane faces) on the locomotor behavior of Paramecium is theoretically analyzed. In an extended model system we discuss the negative feedback of intraciliary calcium [Ca2+]i on the excitability of the ciliary membrane. While a fast blocking of Ca channels is mediated by increased [Ca2+]i and accounts for the short duration of action potentials, a slow [Ca2+ ]i-dependent denaturation of channel molecules is assumed to determine excitability changes of Paramecium on a long time scale.It is emphasized that the duration of long-lasting ciliary reversal which reflects the excitability is not a direct function of the cation ratio Ju [K+]0/[Ca2+] 0 1/2 but rather of the membrane potential Vm.Introduction of negative surface charges can well explain why for a series of different [K+]0, [Ca2+]0 but constant Ja value the excitability is unchanged despite corresponding shifts in measured membrane potentials.  相似文献   

3.
Abstract: Cytosolic free Ca2+ concentration ([Ca2+]i) was measured in differentiated PC12 cells to test whether chemical hypoxia selectively alters intracellular Ca2+ in growth cones and cell bodies. Hypoxia increased [Ca2+]i and exaggerated its response to K+ depolarization in both parts of the cells. [Ca2+]i in the cell bodies was greater than that in the growth cones under resting conditions and in response to K+ or hypoxia. Ca2+-channel blockers selectively altered these responses. The L-channel blocker nifedipine reduced [Ca2+]i following K+ depolarization by 67% in the cell bodies but only 25% in the growth cones. In contrast, the N-channel blocker ω-conotoxin GVIA (ω-CgTX) diminished K+-induced changes in [Ca2+]i only in the growth cones. During hypoxia, nifedipine was more effective in the cell bodies than in the growth cones. During hypoxia, ω-CgTX diminished K+-induced changes by 50–75% in both parts of the cell, but only immediately after depolarization. The combination of nifedipine and ω-CgTX diminished the [Ca2+]i response to K+ with or without hypoxia by >90% in the cell body and 70% in the growth cones. Thus, the increased Ca2+ entry with K+ during hypoxia is primarily through L channels in the cell bodies, whereas in growth cones influx through L and N channels is about equal. The results show that chemical hypoxia selectively alters Ca2+ regulation in the growth cone and cell body of the same cell.  相似文献   

4.
The existence of [Ca2+]i-activated K+-channels in the pancreatic β-cell membrane is based in two observations: quinine inhibits K+-permeability and, increasing intracellular Ca2+ stimulates it. The changes in K+-permeability of the β-cell have been monitored electrically by combining measurements of the dependence of the membrane potential on external K+ concentration and input resistance. The changes in the passive 42K and 86Rb efflux from the whole islet have been measured directly. Intracellular Ca2+ has been increased by various means, including increasing extracellular Ca2+, addition of the Ca2+-ionophore A23187 or noradrenaline and application of mitochondrial uncouplers and blockers. In addition to quinine, many other substances have been found to inhibit or modulate the [Ca2+]i-activated K+-channel. The most important of these is the natural stimulus for insulin secretion, glucose. Glucose may inhibit K+-permeability by lowering intracellular Ca2+. Glibenclamide, a hypoglycaemic sulphonylurea, is about 25 times more active than quinine in blocking the K+-channel in β-cells. The methylxanthines, c-AMP, various calmodulin inhibitors and Ba2+ also inhibit K+-permeability. Genetically diabetic mice have been studied and show an alteration in the [Ca2+]i-activated K+-channel.It is concluded that the [Ca2+]i-activated K+-channel plays a major role in the normal function of the pancreatic β-cell. The study of its properties should prove valuable for the understanding and treatment of diabetes.  相似文献   

5.
Experimental evidences point out the participation of nonsynaptic mechanisms (e.g., fluctuations in extracellular ions) in epileptiform bursting and spreading depression (SD). During these abnormal oscillatory patterns, it is observed an increase of extracellular potassium concentration [K+]o and a decrease of extracellular calcium concentration [Ca2+]o which raises the neuronal excitability. However, whether the high [K+]o triggers and propagates these abnormal neuronal activities or plays a secondary role into this process is unclear. To better understand the influence of extracellular potassium dynamics in these oscillatory patterns, the experimental conditions of high [K+]o and zero [Ca2+]o were replicated in an extended Golomb model where we added important regulatory mechanisms of ion concentration as Na+-K+ pump, ion diffusion and glial buffering. Within these conditions, simulations of the cell model exhibit seizure-like discharges (ictal bursting). The SD was elicited by the interruption of the Na+−K+ pump activity, mimicking the effect of cellular hypoxia (an experimental protocol to elicit SD, the hypoxia-induced SD). We used the bifurcation theory and the fast-slow method to analyze the interference of K+ dynamics in the cellular excitability. This analysis indicates that the system loses its stability at a high [K+]o, transiting to an elevated state of neuronal excitability. Effects of high [K+]o are observed in different stages of ictal bursting and SD. In the initial stage, the increase of [K+]o creates favorable conditions to trigger both oscillatory patterns. During the neuronal activity, a continuous growth of [K+]o by outward K+ flow depresses K+ currents in a positive feedback way. At the last stage, due to the depression of K+ currents, the Na+-K+ pump is the main mechanism in the end of neuronal activity. Thus, this work suggests that [K+]o dynamics may play a fundamental role in these abnormal oscillatory patterns.  相似文献   

6.
In freshly dissociated uterine myocytes, the outward current is carried by K+ through channels highly selective for K+. Typically, nonpregnant myocytes have rather noisy K+ currents; half of them also have a fast-inactivating transient outward current (ITO). In contrast, the current records are not noisy in late pregnant myocytes, and ITO densities are low. The whole-cell IK of nonpregnant myocytes respond strongly to changes in [Ca2+]o or changes in [Ca2+]i caused by photolysis of caged Ca2+ compounds, nitr 5 or DM-nitrophene, but that of late-pregnant myocytes respond weakly or not at all. The Ca2+ insensitivity of the latter is present before any exposure to dissociating enzymes. By holding at −80, −40, or 0 mV and digital subtractions, the whole-cell IK of each type of myocyte can be separated into one noninactivating and two inactivating components with half-inactivation at approximately −61 and −22 mV. The noninactivating components, which consist mainly of iberiotoxin-susceptible large-conductance Ca2+-activated K+ currents, are half-activated at 39 mV in nonpregnant myocytes, but at 63 mV in late-pregnant myocytes. In detached membrane patches from the latter, identified 139 pS, Ca2+-sensitive K+ channels also have a half-open probability at 68 mV, and are less sensitive to Ca2+ than similar channels in taenia coli myocytes. Ca2+-activated K+ currents, susceptible to tetraethylammonium, charybdotoxin, and iberiotoxin contribute 30–35% of the total IK in nonpregnant myocytes, but <20% in late-pregnant myocytes. Dendrotoxin-susceptible, small-conductance delayed rectifier currents are not seen in nonpregnant myocytes, but contribute ∼20% of total IK in late-pregnant myocytes. Thus, in late-pregnancy, myometrial excitability is increased by changes in K+ currents that include a suppression of the ITO, a redistribution of IK expression from large-conductance Ca2+-activated channels to smaller-conductance delayed rectifier channels, a lowered Ca2+ sensitivity, and a positive shift of the activation of some large-conductance Ca2+-activated channels.  相似文献   

7.
Abstract: LAN-1 is a human neuroblastoma cell line that, in the undifferentiated state, does not respond to membrane depolarization with an elevation of [Ca2+]i, monitored by fura-2 single-cell microfluorimetry. The exposure of LAN-1 cells to the differentiating agent retinoic acid induced the appearance of [Ca2+]i elevation elicited by 55 mM K+. Maitotoxin, a putative activator of voltage-sensitive Ca2+ channels, did not evoke an elevation of [Ca2+]i in undifferentiated LAN-1 cells, but produced a marked and sustained increase in [Ca2+]i when superfused in retinoic acid-treated cells. Both high K+- and maitotoxin-induced [Ca2+]i elevation in retinoic acid-differentiated LAN-1 cells was reversed by the lanthanide Gd3+, an inorganic Ca2+-entry blocker, and by the snail toxin ω-conotoxin GVIA, which interacts with the N sub-type of voltage-sensitive Ca2+ channels. In contrast, both Bay K 8644 and nimodipine, dihydropyridines that selectively activate or block, respectively, the L-channel sub-type, were completely ineffective. The tumor promoter phorbol 12-myristate 13-acetate (100 nM), a protein kinase C activator, inhibited the elevation of [Ca2+]i due to Ca2+ influx elicited by membrane depolarization. K+-induced [Ca2+]i elevation appeared 24 h after the addition of retinoic acid and reached the highest magnitude after 72 h. Furthermore, 8 days after the removal of the differentiating agent from the culture medium, the high K+-induced increase of [Ca2+]i was still present. In conclusion, the results of the present study demonstrated that retinoic acid-induced differentiation of LAN-1 cells, which lack a high K+-evoked [Ca2+]i increase in the undifferentiated state, induces the functional expression of an ω-conotoxin GVIA-sensitive, dihydropyridine-insensitive N-type voltage-sensitive Ca2+ channel that can be activated by maitotoxin and negatively modulated by protein kinase C.  相似文献   

8.
The effect of high K concentration, insulin and the L-type Ca2– channel blocker PN 200-110 on cytosolic intracellular free calcium ([Ca2+]i) was studied in single ventricular myocytes of 10-day-old embryonic chick heart, 20-week-old human fetus and rabbit aorta (VSM) single cells using the Ca2+-sensitive fluorescent dye, Fura-2 microfluorometry and digital imaging technique. Depolarization of the cell membrane of both heart and VSM cells with continuous superfusion of 30 mM [K+]o induced a rapid transient increase of [Ca2+]i that was followed by a sustained component. The early transient increase of [Ca2+]i by high [+]o was blocked by the L-type calcium channel antagonist nifedipine. However, the sustained component was found to be insensitive to this drug. PN 200-110 another L-type Ca2+ blocker was found to decrease both the early transient and the sustained increase of [Ca2+]i induced by depolarization of the cell membrane with high [K+]o. Insulin at a concentration of 40 to 80 U/ml only produced a sustained increase of [Ca2+]i that was blocked by PN 200-110 or by lowering the extracellular Ca2+ concentration with EGTA. The sustained increase of [Ca2+], induced by high [K+]o or insulin was insensitive to metabolic inhibitors such as KCN and ouabain as well to the fast Na+ channel blocker, tetrodotoxin and to the increase of intracellular concentrations of cyclic nucleotides. Using the patch clamp technique, insulin did not affect the L-type Ca2+ current and the delayed outward K+ current. These results suggest that the early increase of (Ca2+]i during depolarization of the cell membrane of heart and VSM cells with high [K+]o is due to the opening and decay of an L-type Ca 2+ channel. However, the sustained increase of [Ca2+]i during a sustained depolarization is due to the activation of a resting (R) Ca 2+ channel that is insensitive to lowering [ATP]i and sensitive to insulin.  相似文献   

9.
10.
Calcium (Ca2+)-activated K+ (KCa) channels regulate membrane excitability and are activated by an increase in cytosolic Ca2+ concentration ([Ca2+]i), leading to membrane hyperpolarization. Most patch clamp experiments that measure KCa currents use steady-state [Ca2+] buffered within the patch pipette. However, when cells are stimulated physiologically, [Ca2+]i changes dynamically, for example during [Ca2+]i oscillations. Therefore, the aim of the present study was to examine the effect of dynamic changes in [Ca2+]i on small (SK3), intermediate (hIK1), and large conductance (BK) channels. HEK293 cells stably expressing each KCa subtype in isolation were used to simultaneously measure agonist-evoked [Ca2+]i signals, using indo-1 fluorescence, and current/voltage, using perforated patch clamp. Agonist-evoked [Ca2+]i oscillations induced a corresponding KCa current that faithfully followed the [Ca2+]i in 13–50% of cells, suggesting a good synchronization. However, [Ca2+]i and KCa current was much less synchronized in 50–76% of cells that exhibited Ca2+-independent current events (55% of SK3-, 50% of hIK1-, and 53% of BK-expressing cells) and current-independent [Ca2+]i events (18% SK3- and 33% of BK-expressing cells). Moreover, in BK-expressing cells, where [Ca2+]i and KCa current was least synchronized, 36% of total [Ca2+]i spikes occurred without activating a corresponding KCa current spike, suggesting that BKCa channels were either inhibited or had become desensitized. This desynchronization between dynamic [Ca2+]i and KCa current suggests that this relationship is more complex than could be predicted from steady-state [Ca2+]i and KCa current. These phenomena may be important for encoding stimulus–response coupling in various cell types.  相似文献   

11.
1. When the Ringer''s solution applied to isolated frog sciatic nerve contains K+ in concentrations greater than 2 x standard, the height of the spike and of the after-potential is decreased, as is the duration of the after-potential; recovery of height and of excitability following response is delayed; degree and duration of supernormal excitability are decreased; postcathodal depression and postanodal enhancement are increased and prolonged. 2. The nerve functions just listed in general all change in the opposite direction when exposed'' to increased environmental [Ca++]. (4.5–20 x standard) or decreased [K+] (0.05–0.2 x standard). The effects of decreased [Ca++] (0.20–0.25 x standard) are indeterminate. 3. When [K+] and [Ca++] are both greater than 2 x standard, whatever the ratio between the concentrations the effects characteristic of high [K+] eventually predominate. However, these effects, except for those involving spike height, are preceded by effects characteristic of high [Ca++] when this cation is present in sufficient excess. 4. When [K+] and [Ca++] are reduced to equal low levels (0.1–0.2 x standard), effects characteristic of low [K+] and high [Ca++] are obtained. 5. The experimentally determined order of ability of the environments to produce changes characteristic of high K+ (which is the reverse of the order of their ability to produce changes characteristic of high [Ca++]), is not the order of their K+ or Ca++ concentrations, nor of the ratio between these concentrations (Table II). 6. The results may be explained by the assumption that the functions investigated are all to greater or less degree controlled by (1) the [K+]/[Ca++] ratio and (2) the K+ concentration, at least when this exceeds a critical level. Control by [K+] is more effective for spike height and its recovery after stimulation than for the other functions. The special rôle of K+ is attributed to an unknown specific effect of this ion which Ca++ is unable to oppose. It is suggested that this K+ effect in general becomes marked on the frog nerve functions investigated when the K+ concentration is somewhat above 2 x standard, while the [K+]/[Ca++] ratio must be changed by a factor of 4 or more before it exerts a definite effect on these functions. 7. In standard and in modified cationic environments, nerve functions vary in the ease with which they manifest changes characteristic of high [K+] or of high [Ca++]. 8. The after-potential functions are less completely controlled by the cationic environment than are the other functions investigated.  相似文献   

12.
Summary Flocculation in two strains of Saccharomyces uvarum appears to be governed by the ratio of K+ and Ca2+ concentrations ([K+]/[Ca2+]). When the ratio is diminished either by an increased [Ca2+] or by a decreased [K+], the intensity and rate of flocculation are increased.K+ seems to be an antagonist of Ca2+ in the flocculation mechanism since enhancement of [K+] in the medium decreases uptake of Ca2+. Conversely an increase in [Ca2+] decreases the uptake of K+.  相似文献   

13.
14.
Simulation of intracellular Ca2+ oscillation in a sympathetic neurone   总被引:7,自引:0,他引:7  
Three different theoretical models were considered for the mechanism of the oscillation of the intracellular free Ca2+ ([Ca2+]i) linked to the K+ conductance of the plasma membrane (GK) observed in bullfrog sympathetic ganglion cells. The models assumed a Ca2+-induced Ca2+ release mechanism, an active Ca2+ uptake mechanism at a Ca2+ reservoir site in the ganglion cell, and a Michaelis—Menten type relationship between [Ca2+]i and GK. Including both active and passive Ca2+ transport mechanisms at the plasma membrane, either a one-compartment model or a two-compartment model for the intracellular Ca2+ store reconstructed successfully the [Ca2+]i oscillation and rhythmic membrane hyperpolarizations observed in the ganglion cell, and simulated most of their characteristics. On the other hand, a two-compartment model disregarding of Ca2+ transport at the plasma membrane failed to reproduce the oscillations of [Ca2+]i and membrane potential.  相似文献   

15.
Malignant hyperthermia (MH) is potentially fatal pharmacogenetic disorder of skeletal muscle caused by intracellular Ca2+ dysregulation. NCX is a bidirectional transporter that effluxes (forward mode) or influxes (reverse mode) Ca2+ depending on cellular activity. Resting intracellular calcium ([Ca2+]r) and sodium ([Na+]r) concentrations are elevated in MH susceptible (MHS) swine and murine muscles compared with their normal (MHN) counterparts, although the contribution of NCX is unclear. Lowering [Na+]e elevates [Ca2+]r in both MHN and MHS swine muscle fibers and it is prevented by removal of extracellular Ca2+ or reduced by t-tubule disruption, in both genotypes. KB-R7943, a nonselective NCX3 blocker, reduced [Ca2+]r in both swine and murine MHN and MHS muscle fibers at rest and decreased the magnitude of the elevation of [Ca2+]r observed in MHS fibers after exposure to halothane. YM-244769, a high affinity reverse mode NCX3 blocker, reduces [Ca2+]r in MHS muscle fibers and decreases the amplitude of [Ca2+]r rise triggered by halothane, but had no effect on [Ca2+]r in MHN muscle. In addition, YM-244769 reduced the peak and area under the curve of the Ca2+ transient elicited by high [K+]e and increased its rate of decay in MHS muscle fibers. siRNA knockdown of NCX3 in MHS myotubes reduced [Ca2+]r and the Ca2+ transient area induced by high [K+]e. These results demonstrate a functional NCX3 in skeletal muscle whose activity is enhanced in MHS. Moreover reverse mode NCX3 contributes to the Ca2+ transients associated with K+-induced depolarization and the halothane-triggered MH episode in MHS muscle fibers.  相似文献   

16.
Abstract: The effects of K+ depolarization and of stimulation by veratridine on apparent cytosolic free Ca2+ ([Ca2+]cyt) and net Ca2+ accumulation were measured in isolated rat brain presynaptic nerve terminals (synaptosomes). [Ca2+]cyt was determined with fura-2, and Ca2+ accumulation was measured with tracer 45Ca. [Ca2+]cyt was ~ 325 nM in synaptosomes incubated in the normal physiological salt solution under resting conditions. When [K+]0, was increased from the normal 5 mM to 30 or 50 mM, 45Ca uptake and [Ca2+]cyt both increased within 1 s. Both increases were directly related to [Ca2+]0 for [Ca2+]0= 0.02–1.2 mM; however, the increase in 45Ca uptake greatly exceeded the increase in [Ca2+]cyt. With small Ca2+ loads ≤100 μmol/L of cell water, equivalent to the Ca2+ entry during a train of ≤60 impulses), the 45Ca uptake exceeded the increase in [Ca2+]cyt by a factor of nearly 1,000. This indicates that ~99.9% of the entering Ca2+ was buffered and/or sequestered within ~ 1 s. With larger Ca2+ loads, a larger fraction of the entering Ca2+ was buffered; ~99.97% of the load was buffered with loads of 250–425 μmol/L of cell water. The ratio between the total Ca2+ entry and the increase in [Ca2+]cyt, the “calcium buffer ratio”β, was therefore ~ 3,500:1. This ratio was somewhat lower than the ratio of total intraterminal calcium: [Ca2+]cyt, which ranged between ~7,300:1 and 12,800:1. When the synaptosomes were activated with 10 μM veratridine ([Ca2+]0= 0.2–0.6 mM), 45Ca influx and [Ca2+]cyt increased progressively for ~10 s (β= 2,700:13,050:1) and then leveled off. Application of 10 μM tetrodotoxin before the introduction of veratridine prevented the increases in 45Ca influx and [Ca2+]cyt. Application of 10 μM tetrodotoxin after 5–10 s of exposure to veratridine caused both the [Ca2+]cyt and the veratridine-stimulated 45Ca within the terminals to decline, thereby demonstrating that the Ca2+ loading is reversible in the presence of extracellular Ca2+. These data show that synaptosomes are capable of buffering and metabolizing Ca2+ in a manner expected for intact neurons.  相似文献   

17.
We developed a technique that yields isolated adult rat myocytes, 70% of which are elongated and morphologically similar to intact tissue. Electrophysiological studies showed most of these cells were quiescent, Ca2+-tolerant and exhibited normal action potentials accompanied by contractions. We analyzed 45Ca2+ uptake data in terms of instantaneous, fast and slow compartments. 69% of total exchangeable Ca2+ was found in the slow compartment; the rest was almost equally divided between the instantaneous and fast compartments. Replacement of extracellular Na+ by Li+ or Tris increased 45Ca2+ uptake by the fast compartment; high [K+]o increased this uptake further. These increases appeared to be related also to internal concentrations of Na+. This conclusion was supported by experiments with digitonin-treated cells. Our results indicate that the way Na+-dependent 45Ca2+ uptake is affected by [Na+]o, [Na+]i and [K+]o is compatible with the Na+-Ca2+ exchange mechanism. Our preparation should prove useful in studies of regulation of Ca2+ transport in cardiac muscles.  相似文献   

18.
Summary.  The fungal toxin cytochalasin D as well as endogenous gelsolin depolymerize filamentous actin which may induce dynamic uncoupling of membrane ion channels. In vitro application of cytochalasin D reduced NMDA-induced [3H]noradrenaline release from mouse brain neocortical slices by 38%. In gsn deficient neocortical synaptosomes [Ca2+]i increase in response to K+ (30 mM) depolarization was 33% higher than in wild-type. After transient focal cerebral ischemia K+-induced [Ca2+]i increase in neocortical synaptosomes was 56% lower than in synaptosomes prepared from the non-ischemic contralateral hemisphere. After in vivo pretreatment with cytochalasin D 10 min before MCA occlusion K+-induced [Ca2+]i increase in synaptosomes in vitro prepared 1 h after reperfusion from the ischemic hemisphere was only 25% lower than in contralateral synaptosomes, while cytochalasin D pretreatment in vivo did not reduce K+-induced [Ca2+]i increase in vitro. Hence, presynaptic Ca2+ influx and subsequently neuronal vulnerability are attenuated by increased and are aggravated by decreased F-actin depolymerization. Received June 29, 2001 Accepted August 6, 2001 Published online August 9, 2002  相似文献   

19.
Sergio de la Fuente 《BBA》2010,1797(10):1727-1735
We have investigated the kinetics of mitochondrial Ca2+ influx and efflux and their dependence on cytosolic [Ca2+] and [Na+] using low-Ca2+-affinity aequorin. The rate of Ca2+ release from mitochondria increased linearly with mitochondrial [Ca2+] ([Ca2+]M). Na+-dependent Ca2+ release was predominant al low [Ca2+]M but saturated at [Ca2+]M around 400 μM, while Na+-independent Ca2+ release was very slow at [Ca2+]M below 200 μM, and then increased at higher [Ca2+]M, perhaps through the opening of a new pathway. Half-maximal activation of Na+-dependent Ca2+ release occurred at 5-10 mM [Na+], within the physiological range of cytosolic [Na+]. Ca2+ entry rates were comparable in size to Ca2+ exit rates at cytosolic [Ca2+] ([Ca2+]c) below 7 μM, but the rate of uptake was dramatically accelerated at higher [Ca2+]c. As a consequence, the presence of [Na+] considerably reduced the rate of [Ca2+]M increase at [Ca2+]c below 7 μM, but its effect was hardly appreciable at 10 μM [Ca2+]c. Exit rates were more dependent on the temperature than uptake rates, thus making the [Ca2+]M transients to be much more prolonged at lower temperature. Our kinetic data suggest that mitochondria have little high affinity Ca2+ buffering, and comparison of our results with data on total mitochondrial Ca2+ fluxes indicate that the mitochondrial Ca2+ bound/Ca2+ free ratio is around 10- to 100-fold for most of the observed [Ca2+]M range and suggest that massive phosphate precipitation can only occur when [Ca2+]M reaches the millimolar range.  相似文献   

20.
Estimates of [Ca2+]i sensitivity in intact smooth muscle are frequently obtained by measuring [Ca2+]i with indicators such as aequorin or Fura-2. We investigated whether focal in increases in [Ca2+]i could impair such measures of [Ca2+]i sensitivity. Stimulation of swine carotid artery with 10 μM histamine increased aequorin estimated [Ca2+]i, Fura-2 estimated [Ca2+]i and Ca2+ sensitivity without significantly altering the aequorin/Fura-2 ratio (an estimate of [Ca2+]i homogeneity). Subsequent inhibition of Na+/Ca2+ exchange by replacement of Na+ in the PSS with choline+ significantly increased aequorin-estimated [Ca2+]i but only minimally increased Fura-2 estimated [Ca2+]i, myosin light chain (MLC) phosphorylation and force. This resulted in a large increase in the aequorin/Fura-2 ratio, suggesting an increase in [Ca2+] inhomogeneity. Addition of 100 μM histamine to tissues in the choline+ buffer initially increased both aequorin and Fura-2 estimated [Ca2+]i but after 10 min exposure both of the [Ca2+]i estimates declined to pre-histamine levels. Histamine addition significantly increased MLC phosphorylation and force, indicating increased Ca2+ sensitivity, but the aequorin/Fura-2 ratio remained elevated and uncharged from pre-histamine values. These data show that under certain conditions, aequorin and Fura-2 can yield widely differing estimates of [Ca2+]i, and thus can cause misleading assessments of Ca2+ sensitization mechanisms. These discrepancies may arise from inhomogeneous or focal increases in [Ca2+]i which can be evaluated with the aequorin/Fura-2 ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号