首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Human aldehyde dehydrogenase (EC 1.2.1.3) isozymes E1 and E2 were irreversibly inactivated by stoichiometric concentrations of the haloenol lactones 3-isopropyl-6(E)-bromomethylene tetrahydro-pyran-2-one and 3-phenyl-6(E)-bromomethylene tetrahydro-pyran-2-one. No inactivation occurred with the corresponding nonhalogenated enol lactones. Both the dehydrogenase and esterase activities were abolished. Activity was not regained on dialysis or treatment with 2-mercaptoethanol. The inactivation was subject to substrate protection: NAD afforded protection which increased in the presence of the aldehyde-substrate competitive inhibitor chloral. Saturation kinetics gave positivey-axis intercepts, allowing the determination of binding constants. Inactivation stiochiometry determined with14C-labeled 3-(1-naphthyl)-6(E)-iodomethylene tetrahydropyran-2-one was found to correspond to the active-site number. The nonhalogenated lactone, 3-(1-naphthyl)-6(E)-methylene tetrahydropyran-1-one was shown to be a substrate for aldehyde dehydrogenase via its esterase function. Inactivation and enzymatic hydrolysis occurred within a similar time frame. Opening of the lactone ring to form enzyme-acyl intermediate with active site cysteine appears to be a necessary prerequisite to inactivation, since halogen in the lactone ring is nonreactive. Thus, the inactivation of aldehyde dehydrogenase by haloenol lactones is mechanism-based. Inactivation by haloenol lactones occurs in a manner analogous to that of chymotrypsin with which aldehyde dehydrogenase shares esterase activity and binding of haloenol lactones at the active site.  相似文献   

2.
Employing 3,4-dihydroxyphenylacetaldehyde (dopal) as a substrate for human aldehyde dehydrogenase (aldehyde:NAD+ oxidoreductase, EC 1.2.1.3) in anaerobic conditions, inactivation of both cytoplasmic E1 and mitochondrial E2 isozymes during catalysis has been observed. Incorporation of 14C-labelled dopal has been demonstrated by retention of label following denaturation and exhaustive dialysis and by peptide mapping following tryptic digestion. Incorporation of label gave linear plots vs. activity remaining with up to two molecules incorporated per molecule of enzyme and 30% activity remaining. Further incorporation (up to 16 molecules) occurred, but was non-linear when plotted vs. activity remaining. Protection against activity loss during incorporation of the first two molecules was afforded by NAD, NADH, chloral, and by chloral and NAD together, the last being the most effective. Saturation kinetics gave y-axis intercepts, suggesting interaction at a specific point on the enzyme surface. The Ki value from saturation kinetics was the same as that from the slope replot in catalytic reaction. Peptide mapping of tryptic digests showed that a single peptide was labelled, confirming specificity of interaction. Even in the absence of complete inactivation, the results suggest that reaction with the first two molecules occurs at some point on the enzyme surface important for enzyme activity. The possibility of such a reaction occurring in vivo is discussed.  相似文献   

3.
A major component of the sex pheromone from the tobacco budworm moth Heliothis virescens is a C16 straight-chain aldehyde with a single unsaturation at the eleventh position. The sex pheromones are inactivated when metabolized to their corresponding acids by insect aldehyde dehydrogenase. During this investigation it was demonstrated that the C16 aldehyde is a good substrate for human aldehyde dehydrogenase (EC 1.2.1.3) isoenzymes E1 and E2 with Km and Kcat. values at pH 7.0 of 2 microM and 0.4 mumol of NADH/min per mg and of 0.6 microM and 0.24 mumol of NADH/min per mg respectively. A vinyl ketone analogue of the pheromone inhibited insect pheromone metabolism; it also inactivated human aldehyde dehydrogenase. Total inactivation of both isoenzymes was achieved at stoichiometric (equal or less than the subunit number) concentrations of vinyl ketone, incorporating 2.1-2.6 molecules/molecule of enzyme. Substrate protection was observed in the presence of the parent aldehyde and 5'-AMP. Peptide maps of tryptic digests of the E2 isoenzyme modified with 3H-labelled vinyl ketone showed that incorporation occurred into a single peptide peak. The labelled peptide of E2 isoenzyme was further purified on h.p.l.c. and sequenced. The label was incorporated into cysteine-302 in the primary structure of E2 isoenzyme, thus indicating that cysteine-302 is located in the aldehyde substrate area of the active site of aldehyde dehydrogenase. Affinity labelling of aldehyde dehydrogenase with vinyl ketones may prove to be of general utility in biochemical studies of these enzymes.  相似文献   

4.
Dehydrogenase activity of the cytoplasmic (E1) isozyme of human liver aldehyde dehydrogenase (EC 1.2.1.3) was almost totally abolished (3% activity remaining) by preincubation with dicyclohexylcarbodiimide (DCC), while esterase activity with p-nitrophenyl acetate as substrate remained intact. The esterase reaction of the modified enzyme exhibited a hysteretic burst prior to achieving steady-state velocity; addition of NAD+ abolished the burst. TheK m for p-nitrophenyl acetate was increased, but physicochemical properties remained unchanged. The selective inactivation of dehydrogenase activity was the result of covalent bond formation. Protection by NAD+ and chloral, saturation kinetics, and the stoichiometry and specificity of interaction indicated that the reaction of DCC occurred at the active site of the E1 isozyme. The results suggested that some amino acid other than aspartate or glutamate, possibly a cysteine residue, located on a large tryptic peptide of the E1 enzyme, may have reacted with DCC.  相似文献   

5.
Bromoacetophenone (2-bromo-1-phenylethanone) has been characterized as an affinity reagent for human aldehyde dehydrogenase (EC 1.2.1.3) [MacKerell, MacWright & Pietruszko (1986) Biochemistry 25, 5182-5189], and has been shown to react specifically with the Glu-268 residue [Abriola, Fields, Stein, MacKerell & Pietruszko (1987) Biochemistry 26, 5679-5684] with an apparent inactivation stoichiometry of two molecules of bromoacetophenone per molecule of enzyme. The specificity of bromoacetophenone for reaction with Glu-268, however, is not absolute, owing to the extreme reactivity of this reagent. When bromo[14C]acetophenone was used to label the human cytoplasmic E1 isoenzyme radioactively and tryptic fragmentation was carried out, peptides besides that containing Glu-268 were found to have reacted with reagent. These peptides were purified by h.p.l.c. and analysed by sequencing and scintillation counting to quantify radioactive label in the material from each cycle of sequencing. Reaction of bromoacetophenone with the aldehyde dehydrogenase molecule during enzyme activity loss occurs with two residues, Glu-268 and Cys-302. The activity loss, however, appears to be proportional to incorporation of label at Glu-268. The large part of incorporation of label at Cys-302 occurs after the activity loss is essentially complete. With both Glu-268 and Cys-302, however, the incorporation of label stops after one molecule of bromoacetophenone has reacted with each residue. Reaction with other residues continues after activity loss is complete.  相似文献   

6.
The reversible inactivation of porcine heart mitochondrial malate dehydrogenase by pyridoxal 5'-phosphate yields an irreversible modification upon sodium borohydride reduction. A 200-fold molar excess of pyridoxal-5'-P over enzyme results in inactivation to the extent of 54%, and incorporation of 5.7 mol of inactivator per mol of enzyme. The same inactivation carried out in the presence of 80 mM coenzyme, NADH, produces malate dehydrogenase which is approximately 94% active and contains 4.6 mol of pyridoxal-5'-P per mol of enzyme. The incorporation difference between inactivated and protected samples suggests, for total inactivation, the modification of 2 residues per mol of enzyme (i.e. 1 residue per subunit, or 1 per enzymatic active site). This specificity was confirmed by the isolation of a single pyridoxyl-5'-P-labeled "difference peptide" obtained by comparison of the Dowex 1-X2 elution profiles of tryptic digests of protected and inactivated samples, respectively. Amino acid analysis of the peptide demonstrated the presence of N6-pyridoxyl-L-lysine (Lys(Pyx)), establishing the existence of an essential lysing residue in the active center of malate dehydrogenase. The amino acid sequence of the active center hexapeptide has been determined to be: H2NLys(Pyx)Pro-Gly-Met-Thr-Arg-COOH.  相似文献   

7.
NADP(+)-specific glutamate dehydrogenase of Salmonella typhimurium was previously shown to react irreversibly at the coenzyme site with the nucleotide analogue 2-((4-bromo-2,3-dioxobutyl)thio)-1,N6-ethenoadenosine 2',5'-bisphosphate (2-BDB-T epsilon A 2',5'-DP) yielding a partially active enzyme, and inactivation was attributed to modification of the peptide Leu282-Cys-Glu-Ile-Lys286 (Bansal, A., Dayton, M.A., Zalkin, H., and Colman, R.F. (1989) J. Biol. Chem. 264, 9827-9835). Three mutant enzymes have now been engineered, expressed in Escherichia coli, and purified: the single mutants C283I and E284Q and the double mutant C283I:E284Q. The wild-type and mutant enzymes have similar specific activities and Km values for alpha-ketoglutarate, ammonium ion, and NADPH, indicating that neither cysteine 283 nor glutamic acid 284 is essential for activity. The mutant enzyme E284Q, like wild-type glutamate dehydrogenase, is substantially inactivated by 2-BDB-T epsilon A 2',5'-DP. In contrast, the two cysteine mutant enzymes, C283I and C283I:E284Q, are not inactivated by 2-BDB-T epsilon A 2',5'-DP. Modified tryptic peptides with the sequence Leu-X-Glu(Gln)-Ile-Lys were isolated from wild-type or E284Q enzymes inactivated by 2-BDB-T epsilon A 2',5'-DP. This peptide was absent from digests of active wild-type enzyme modified in the presence of the protectant NADPH and from digests of active C283I enzyme after incubation with 2-BDB-T epsilon A 2',5'-DP. Although it is not required for catalytic activity, cysteine 283 is implicated by the results of the affinity labeling experiments as the reaction target of the nucleotide analogue and is located in the region of the coenzyme binding site.  相似文献   

8.
A previous study from our laboratory suggested that 3-bromo-1,4-dihydroxy-2-butanone 1,4-bisphosphate is an affinity label for spinach ribulosebisphosphate carboxylase. To identify the essential residues that react with the reagent we have isolated and characterized the labeled peptides that are present in tryptic digests of inactivated enzyme but lacking in digests of the substrate-protected enzyme. Peptides representing two sites of modification have been obtained from the inactivated carboxylase. Both sites of reaction have been identified as lysyl residues based on the conversion of the derivatives to free lysine by oxidation with sodium metaperiodate. Sodium dodecyl sulfate-gel electrophoretic experiments show that both essential lysyl residues are contained within the large subunit of ribulosebisphosphate carboxylase. In addition to lysyl residues, sulfhydryl groups of the carboxylase are also modified, but their modification seems to play little role in the inactivation process. The carboxylase modified in the presence of substrate contains sulfhydryl derivatives but is essentially lacking in lysyl derivatives. By comparing the profiles from ion exchange chromatography of labeled peptides in digests of inactivated and substrate-protected enzyme, we conclude that the same sulfhydryl groups are modified in the absence and presence of substrate.  相似文献   

9.
The arginine-specific reagent 1,2-cyclohexanedione reacts selectively with the arginine residue of the C-1-phosphate-binding site of aldolase and inactivates the enzyme. The labeled peptide isolated from tryptic digests of inactivated aldolase was found to correspond to the sequence Leu-43 to Arg-56, the residue modified by cyclohexanedione being Arg-55. This peptide was absent form digests of aldolase treated in the same way but protected from inactivation by the presence of substrate, thus correlating modification of Arg-55 with loss of activity. Selective isolation ofthe peptide containing the modified arginine residue was effected by chemisorption chromatography on boric acid gel, a procedure exploiting the specific interaction of matrix-bound boric acid groups with vicinal cis-hxdroxyl groups of cyclohexanedione-modified arginine side chains.  相似文献   

10.
Human lactate dehydrogenase isozymes, LDH-1 and LDH-5, were inactivated at 25 degrees C and pH 7.5 by N-alkylmaleimides of varying chain length, and by fluorescein mercuric acetate. Second-order rate constants for the inactivation of LDH-5 by N-alkylmaleimides increased with increasing chain length of the maleimide derivative while essentially no chain-length effect was observed in the inactivation of LDH-1. Both isozymes were effectively inactivated by low concentrations of fluorescein mercuric acetate, and in both cases saturation kinetics were observed. Dissociation constants obtained from double-reciprocal plotting methods indicated a twofold better binding of fluorescein mercuric acetate to LDH-1. Protection from fluorescein mercuric acetate by NAD was observed with both enzymes.  相似文献   

11.
The effect of various thiol-modifying reagents on the esterase activity of sheep liver cytoplasmic aldehyde dehydrogenase is reported here. Both symmetrical reagents (disulfiram, 2,2'- and 4,4'-dithiodipyridines) and unsymmetrical reagents (methyl diethylthiocarbamyl disulphide, methyl 2- and 4-pyridyl disulphides) were investigated. The results suggest that all the modifiers react to varying extents with a pair of enzymic thiol groups ('A' and 'B'), and that the more specifically group 'A' is modified, the more the enzyme is inactivated. This supports the idea that group 'A' may be the essential nucleophile in the reaction catalysed by aldehyde dehydrogenase. Modification of group 'B' may or may not reduce the esterase activity depending on the nature of the label introduced. The results of the present experiments and of previous similar experiments concerning the dehydrogenase activity of the enzyme are consistent with the proposal that a common active site is responsible for both esterase and dehydrogenase activities.  相似文献   

12.
Although the three-dimensional structure of the dimeric class 3 rat aldehyde dehydrogenase has recently been published (Liu ZJ et al., 1997, Nature Struct Biol 4:317-326), few mechanistic studies have been conducted on this isoenzyme. We have characterized the enzymatic properties of recombinant class 3 human stomach aldehyde dehydrogenase, which is very similar in amino acid sequence to the class 3 rat aldehyde dehydrogenase. We have determined that the rate-limiting step for the human class 3 isozyme is hydride transfer rather than deacylation as observed for the human liver class 2 mitochondrial enzyme. No enhancement of NADH fluorescence was observed upon binding to the class 3 enzyme, while fluorescence enhancement of NADH has been previously observed upon binding to the class 2 isoenzyme. It was also observed that binding of the NAD cofactor inhibited the esterase activity of the class 3 enzyme while activating the esterase activity of the class 2 enzyme. Site-directed mutagenesis of two conserved glutamic acid residues (209 and 333) to glutamine residues indicated that, unlike in the class 2 enzyme, Glu333 served as the general base in the catalytic reaction and E209Q had only marginal effects on enzyme activity, thus confirming the proposed mechanism (Hempel J et al., 1999, Adv Exp Med Biol 436:53-59). Together, these data suggest that even though the subunit structures and active site residues of the isozymes are similar, the enzymes have very distinct properties besides their oligomeric state (dimer vs. tetramer) and substrate specificity.  相似文献   

13.
Rabbit skeletal muscle glycogen synthase was inhibited by pyridoxal 5'-phosphate and irreversibly inactivated after sodium borohydride reduction of the enzyme-pyridoxal-P complex. The irreversible inactivation by pyridoxal-P was opposed by the presence of the substrate UDP-glucose. With [3H]pyridoxal-P, covalent incorporation of 3H label into the enzyme could be monitored. UDP-glucose protected against 3H incorporation, whereas glucose-6-P was ineffective. Peptide mapping of tryptic digests indicated that two distinct peptides were specifically modified by pyridoxal-P. One of these peptides contained the NH2-terminal sequence of the glycogen synthase subunit. Chymotrypsin cleavage of this peptide resulted in a single-labeled fragment with the sequence: Glu-Val-Ala-Asn-(Pyridoxal-P-Lys)-Val-Gly-Gly-Ile-Tyr. This sequence is identical to that previously reported (Tagaya, M., Nakano, K., and Fukui, T. (1985) J. Biol. Chem. 260. 6670-6676) for a peptide specifically modified by a substrate analogue and inferred to form part of the active site of the enzyme. Sequence analysis revealed that the modified lysine was located at residue 38 from the NH2 terminus of the rabbit muscle glycogen synthase subunit. An analogous tryptic peptide obtained from the rabbit liver isozyme displayed a high degree of sequence homology in the vicinity of the modified lysine. We propose that the extreme NH2 terminus of the glycogen synthase subunit forms part of the catalytic site, in close proximity to one of the phosphorylated regions of the enzyme (site 2, serine 7). In addition, the work extends the known NH2-terminal amino acid sequences of both the liver and muscle glycogen synthase isozymes.  相似文献   

14.
N-Bromoacetylethanolamine phosphate rapidly and irreversibly inactivates rabbit muscle phosphoglycerate mutase. At high molar ratios of reagent to enzyme, loss of activity (both mutase and phosphatase) approximates pseudo-first order kinetics. A rate-saturation effect is observed with half-maximal rate of inactivation occurring at 0.32 mM reagent, a value close to the Km for 3-phosphoglyceric acid. This datum and the dissociation constant of the 2,3-bisphosphoglycerate-enzyme complex, as determined from inactivation kinetics in the presence of the bisphosphate, suggest that the reagent reacts at the substrate binding site. Inactivation results from the covalent incorporation of about 0.8 mol of reagent/mol of catalytic subunit as determined with 14C-labeled reagent. Incorporation is negligible in the presence of substrate and is reduced 8-fold in the presence of 6 M urea. From amino acid analyses on acid hydrolysates of the inactivated enzyme, we have identified a sulfhydryl group as the site of alkylation. A peptide containing the essential sulfhydryl group has been isolated from a tryptic digest of the enzyme inactivated with labeled reagent; its amino acid composition is Trp1, Lys1,-Cys(Cm)1, Asp1, Ser1, Glu2, Gly1, Ala1, Leu1, Phe2.  相似文献   

15.
Active site of human liver aldehyde dehydrogenase   总被引:9,自引:0,他引:9  
Bromoacetophenone (2-bromo-1-phenylethanone) functions as an affinity reagent for human aldehyde dehydrogenase (EC 1.2.1.3) and has been found specifically to label a unique tryptic peptide in the enzyme. Amino-terminal sequence analysis of the labeled peptide after purification by two different procedures revealed the following sequence: Val-Thr-Leu-Glu-Leu-Gly-Gly-Lys. Radioactivity was found to be associated with the glutamate residue, which was identified as Glu-268 by reference to the known amino acid sequence. This paper constitutes the first identification of an active site of aldehyde dehydrogenase.  相似文献   

16.
Dihydrodiol dehydrogenase from pig liver was inactivated by diethylpyrocarbonate (DEP) and by rose bengal-sensitized photooxidation. The DEP inactivation was reversed by hydroxylamine and the absorption spectrum of the inactivated enzyme indicated that both histidine and tyrosine residues were carbethoxylated. The rates of inactivation by DEP and by photooxidation were dependent on pH, showing the involvement of a group with a pKa of 6.4. The kinetics of inactivation and spectrophotometric quantification of the modified residues suggested that complete inactivation was caused by modification of one histidine residue per active site. The inactivation by the two modifications was partially prevented by either NADP(H) or the combination of NADP+ and substrate, and completely prevented in the presence of both NADP+ and a competitive inhibitor which binds to the enzyme-NADP+ binary complex. The DEP-modified enzyme caused the same blue shift and enhancement of NADPH fluorescence as did the native enzyme, suggesting that the modified histidine is not in the coenzyme-binding site of the enzyme. The results suggest the presence of essential histidine residues in the catalytic region of the active site of pig liver dihydrodiol dehydrogenase.  相似文献   

17.
The flavoprotein nitroalkane oxidase catalyzes the oxidative denitrification of primary or secondary nitroalkanes to the corresponding aldehydes or ketones with production of hydrogen peroxide and nitrite. The enzyme is irreversibly inactivated by treatment with N-ethylmaleimide at pH 7. The inactivation is time-dependent and shows first-order kinetics for three half-lives. The second-order rate constant for inactivation is 3.4 +/- 0.06 m(-)(1) min(-)(1). The competitive inhibitor valerate protects the enzyme from inactivation, indicating an active site-directed modification. Comparison of tryptic maps of enzyme treated with N-[ethyl-1-(14)C]maleimide in the absence and presence of valerate shows a single radioactive peptide differentially labeled in the unprotected enzyme. The sequence of this peptide was determined to be LLNEVMCYPLFDGGNIGLR using Edman degradation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The cysteine residue was identified as the site of alkylation by ion trap mass spectrometry.  相似文献   

18.
C T Grubmeyer  W R Gray 《Biochemistry》1986,25(17):4778-4784
Salmonella typhimurium L-histidinol dehydrogenase (EC 1.1.1.23), a four-electron dehydrogenase, was inactivated by an active-site-directed modification reagent, 7-chloro-4-nitro-2,1,3-benzoxadiazole (NBD-Cl). The inactivation followed pseudo-first-order kinetics and was prevented by low concentrations of the substrate L-histidinol or by the competitive inhibitors histamine and imidazole. The observed rate saturation kinetics for inactivation suggest that NBD-Cl binds to the enzyme noncovalently before covalent inactivation occurs. The UV spectrum of the inactivated enzyme showed a peak at 420 nm, indicative of sulfhydryl modification. Stoichiometry experiments indicated that full inactivation was correlated with modification of 1.5 sulfhydryl groups per subunit of enzyme. By use of a substrate protection scheme, it was shown that 0.5 sulfhydryl per enzyme subunit was neither protected against NBD-Cl modification by L-histidinol nor essential for activity. Modification of the additional 1.0 sulfhydryl caused complete loss of enzyme activity and was prevented by L-histidinol. Pepsin digestion of NBD-modified enzyme was used to prepare labeled peptides under conditions that prevented migration of the NBD group. HPLC purification of the peptides was monitored at 420 nm, which is highly selective for NBD-labeled cysteine residues. By amino acid sequencing of the major peptides, it was shown that the reagent modified primarily Cys-116 and Cys-377 and that the presence of L-histidinol gave significant protection of Cys-116. The presence of a cysteine residue in the histidinol binding site is consistent with models in which formation and subsequent oxidation of a thiohemiacetal occurs as an intermediate step in the overall reaction.  相似文献   

19.
4-trans-(N,N-Dimethylamino)cinnamaldehyde (DACA) is a chromophoric substrate of aldehyde dehydrogenase (EC 1.2.1.3) whose fate can be followed during catalysis. During this investigation we found that DACA also fluoresces and that this fluorescence is enhanced and blue-shifted upon binding to aldehyde dehydrogenase. Binding of DACA to aldehyde dehydrogenase also occurs in the absence of coenzyme. Benzaldehyde (a substrate), acetophenone (a substrate-competitive inhibitor), and the substrate-competitive affinity reagent bromoaceto-phenone interfere with DACA binding. Thus, DACA binds to the active site and can be employed for titration of active aldehyde dehydrogenase. Both E1 and E2 isozymes, which are homotetramers, bind DACA with dissociation constants of 1–4 M with a stoichiometry of 2 mol DACA/mol enzyme. The stoichiometry of enzyme–acyl intermediate was also found to be 2 mol DACA/mol enzyme for both E1 and E2 isozymes. Thus, both enzymes appear to have only two substrate-binding sites which participate in catalysis. The level of enzyme–acyl intermediate remained constant at different pH values, showing that enhancement of velocity with pH was not due to altered DACA–enzyme levels. When the reaction velocity was increased even further by using 150 M Mg2+ the intermediate level was decreased, suggesting that both increased pH and Mg2+ promote decomposition of the DACA–enzyme intermediate. Titration with DACA permits study of aldehyde substrate catalysis before central complex interconversion.  相似文献   

20.
Human liver aldehyde dehydrogenase has been found to be capable of hydrolyzing p-nitrophenyl esters. Esterase and dehydrogenase activities exhibited identical ion exchange and affinity properties, indicating that the same protein catalyzes both reactions. Competitive inhibition of esterase activity by glyceraldehyde and chloral hydrate furnished evidence that p-nitrophenyl acetate was hydrolyzed at the aldehyde binding site for dehydrogenase activity. Pyridine nucleotides modified esterase activity; NAD+ accelerated the rate of p-nitrophenyl acetate hydrolysis more that 5-fold, whereas NADH increased activity by a factor of 2. Activation constants of 117 muM for NAD+ and 3.5 muM for NADH were obtained from double reciprocal plots of initial rates as a function of modifier concentration at pH 7. The kinetics of activation of ester hydrolysis were consistent with random addition of pyridine nucleotide modifier and ester substrate to this enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号