首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ferrochelatase [heme synthase, protoheme ferrolyase (EC 4.99.1.1)], the terminal enzyme of the heme biosynthetic pathway, catalyzes the incorporation of ferrous ion into protoporphyrin IX to form protoheme IX. The genes and cDNAs for ferrochelatase from mammals and microorganisms have been isolated. The gene for human ferrochelatase has been mapped to chromosome 18q 21.3 and consists of 11 exons with a size of about 45 kilodaltons. The induction of ferrochelatase expression occurs during erythroid differentiation, and can be attributed to the existence of the promoter sequences of erythroid-related genes. Analysis of the ferrochelatase gene in patients with erythropoietic protoporphyria, an inherited disease caused by ferrochelatase defects, revealed that molecular anomalies of ferrochelatase from 11 patients were found in 9 patients as autosomal dominant type, and 2 patients as recessive type. Diversity of the mutations of the ferrochelatase gene is also briefly described.  相似文献   

2.
Protoporphyria is a hereditary disorder characterized by a marked decrease in the activity of ferrochelatase, the terminal enzyme in the heme biosynthetic pathway. We have prepared specific polyvalent antibodies against bovine ferrochelatase in rabbits. The specificity of the antibody preparation against ferrochelatase was demonstrated by western blot analysis and immunoprecipitation of ferrochelatase activity. The antibody also cross-reacted weakly with ferrochelatase from human mitochondria. To quantify immunoreactive ferrochelatase in tissue samples, a kinetic-based enzyme-linked immunosorbent assay (k-ELISA) was developed. Ferrochelatase activity and the level of immunoreactive protein were measured in hepatic mitochondria isolated from six normal and nine protoporphyric (homozygous) cattle. Ferrochelatase activity was less than 10% of normal in mitochondria from protoporphyric animals; the amount of immunoreactive material was equivalent to that from normal animals. Similar studies were performed with samples from three normal and two protoporphyric (heterozygous) humans. Ferrochelatase activity was decreased in protoporphyric samples (about 17% of normal, but there was no concomitant decrease in immunoreactive material. These data demonstrate that a normal amount of ferrochelatase protein is present and suggest that bovine and human protoporphyria result from point mutations in the gene encoding ferrochelatase.  相似文献   

3.
The molecular basis of the ferrochelatase defect responsible for human Erythropoietic Protoporphyria (EPP), a usually autosomal dominant disease, was investigated in a family with an apparently homozygous patient. Two mutations of the ferrochelatase gene were identified by sequencing the proband's cDNA after in vitro amplification of the mRNA and subcloning of the amplified products. One mutation results from a G to T transition at nucleotide 163 which produces a glycine to cysteine substitution at amino-acid residue 55 (G-55-C). The other one was a G to A change at nucleotide 801, leading to a methionine to isoleucine substitution at amino-acid residue 267 (M-267-I). This EPP patient was then double heterozygous and as expected each of his parents carried one of the mutations. A second similar EPP patient was screened for these mutations with negative results, showing a genetic heterogeneity in EPP.  相似文献   

4.
Protoporphyria is generally an autosomal dominant disease that is characterized clinically by photosensitivity and hepatobiliary disease and that is characterized biochemically by elevated protoporphyrin levels. The enzymatic activity of ferrochelatase, which catalyzes the last step in the heme biosynthetic pathway, is deficient in all tissues of patients with protoporphyria. In this study, sequencing of ferrochelatase cDNAs from a patient with protoporphyria revealed a single point mutation in the cDNAs resulting in the conversion of a Phe(TTC) to a Ser(TCC) in the carboxy-terminal end of the protein, F417S. Further, the human ferrochelatase gene was mapped to chromosome 18q21.3 by chromosomal in situ suppression hybridization. Finally, expression of recombinant ferrochelatase in Escherichia coli demonstrated a marked deficiency in activity of the mutant ferrochelatase protein and of mouse-human mutant ferrochelatase chimeric proteins. Therefore, a point mutation in the coding region of the ferrochelatase gene is the genetic defect in some patients with protoporphyria.  相似文献   

5.
Erythropoietic protoporphyria (EPP; MIM 177000) is an inherited disorder caused by partial deficiency of ferrochelatase (FECH), the last enzyme in the heme biosynthetic pathway. In EPP patients, the FECH deficiency causes accumulation of free protoporphyrin in the erythron, associated with a painful skin photosensitivity. In rare cases, the massive accumulation of protoporphyrin in hepatocytes may lead to a rapidly progressive liver failure. The mode of inheritance in EPP is complex and can be either autosomal dominant with low clinical penetrance, as it is in most cases, or autosomal recessive. To acquire an in-depth knowledge of the genetic basis of EPP, we conducted a systematic mutation analysis of the FECH gene, following a procedure that combines the exon-by-exon denaturing-gradient-gel-electrophoresis screening of the FECH genomic DNA and direct sequencing. Twenty different mutations, 15 of which are newly described here, have been characterized in 26 of 29 EPP patients of Swiss and French origin. All the EPP patients, including those with liver complications, were heterozygous for the mutations identified in the FECH gene. The deleterious effect of all missense mutations has been assessed by bacterial expression of the respective FECH cDNAs generated by site-directed mutagenesis. Mutations leading to a null allele were a common feature among three EPP pedigrees with liver complications. Our systematic molecular study has resulted in a significant enlargement of the mutation repertoire in the FECH gene and has shed new light on the hereditary behavior of EPP.  相似文献   

6.
7.
Protoporphyria (PP) is an inherited disorder of porphyrin metabolism in man in which there is excessive accumulation and excretion of protoporphyrin. Recently, a similar disorder has been described in cattle. In this report, the clinical, biochemical, and genetic features of bovine and human PP are compared. Human and bovine PP are characterized by photosensitivity and elevation of erythrocyte and fecal protoporphyrin levels. In both disorders, a deficiency of heme synthase activity is present in all tissues which have been examined. The diseases differ clinically in that hepatobiliary disease has been found thus far only in human PP. They also have different inheritance patterns. Human PP is an autosomal dominant disease, while initial studies strongly suggest that there is an autosomal recessive pattern of inheritance in bovine PP.  相似文献   

8.
9.
Erythropoietic protoporphyria (EPP), an inborn error of heme metabolism, causes in the majority of the patients only a symptom of photosensitivity. However, around 2% of the EPP sufferers develop liver complication in the form of liver cirrhosis and progressive liver failure. Mutations in the human ferrochelatase (FECH) gene causing EPP are highly heterogeneous and mostly family-specific. Actually, 62 FECH mutations have been published, 48 of them are "null allele" mutations inducing the formation of a truncated protein. The remaining 14 are missense mutations. In contrast to the null allele mutations, the latter lead to substitution of a single amino acid residue in the protein molecule and generate an enzyme that, although functionally impaired, is in its full length. In order to study the association between "null allele" mutation and liver complication, we combined our data with those in the literature. A total of 112 EPP patients were counted among 93 EPP families with a known FECH mutation. All 18 EPP patients who had severe liver complication carried a "null allele" mutation. In contrast, none of the 20 patients who carried a missense mutation had developed liver complication till the time of study (Fisher's exact test, p<0.05). High protoporphyrin blood concentration are considered to be a sign of an increased risk of liver disease. No correlation of protoporphyrin blood level with the type of mutation, was found, if patients with overt liver disease were excluded from the sample. Furthermore, no significant association of the liver complication with the location of the mutation within the FECH gene was found (Fisher exact test p = 0.46). These available data indicate a significant genotype-phenotype correlation between "null allele" mutation and protoporphyrin related liver disease in EPP. Although the risk for a EPP patient with a missense mutation to develop liver disease cannot be totally eliminated based on these data, it is comparably low.  相似文献   

10.
Association of ferrochelatase with Complex I in bovine heart mitochondria   总被引:1,自引:0,他引:1  
The location of ferrochelatase in bovine heart mitochondria has been studied. When the mitochondria were fractionated into Complexes I, II and III, ferrochelatase activity was only found in Complex I. Complex I also showed heme synthesis from ferric ion in the presence of NADH as an electron donor. Immunoblot experiments confirmed the presence of ferrochelatase in Complex I, but not in Complexes II or III. Some phospholipids, including phosphatidylserine and cardiolipin, stimulated NADH-dependent heme synthesis from ferric ion. When purified ferrochelatase was incubated with the low molecular weight form of NADH dehydrogenase prepared from Complex I, heme synthesis from ferric ion occurred by the addition of NADH. FMN markedly elevated the synthesis. These results indicate that ferrous ion is produced by NADH oxidation in Complex I and is then utilized for heme synthesis by ferrochelatase.  相似文献   

11.
Orientation of ferrochelatase in bovine liver mitochondria   总被引:11,自引:0,他引:11  
The orientation of ferrochelatase (protoheme ferro-lyase, EC 4.99.1.1), the terminal enzyme of the heme biosynthetic pathway, was examined in bovine liver mitochondria. The ability of a membrane-impermeable sulfhydryl reagent, 4,4'-dimaleimidylstilbene-2,2'-disulfonic acid, to inactivate ferrochelatase in intact or disrupted mitochondria and mitoplasts was examined. Using succinate dehydrogenase as an internal marker, it was found that ferrochelatase was inactivated only in disrupted mitochondria and mitoplasts, suggesting an internal location for the active site of the enzyme. In addition, antibodies raised against purified ferrochelatase were found to inhibit activity only in disrupted but not in intact mitoplasts. These data demonstrate that in bovine liver mitochondria ferrochelatase is located on the matrix side of the inner mitochondrial membrane. Data obtained with the membrane-impermeable amino reagent isethionyl acetimidate indicate that ferrochelatase physically spans the inner mitochondrial membrane with portions of the protein exposed on both sides of the membrane.  相似文献   

12.
Bovine milk lysozyme has been partially purified by a method developed in this laboratory. We have shown, by preliminary sequential analysis, and by gel filtration on HPLC, that the product is a mixture of two components. One of these, the enzymically active one, differs in its N-terminal sequence from that of "lysozyme 2", a bovine stomach mucosal enzyme, by 7 residues within the first 39 residues. However, some of its properties differ markedly from those of lysozyme 2. The other component, comprising 70% by weight of the total mixture, bears no sequential resemblance to any protein known to us. Our two component system appears to be the same as the preparation of Chandan et al. (Biochim. Biophys. Acta 110, 289 (1965], which they concluded was an homogeneous preparation of lysozyme.  相似文献   

13.
We investigated the molecular basis of ferrochelatase in a Japanese patient with erythropoietic protoporphyria (EPP), complicated by fatal liver failure, and defined a novel point mutation in the ferrochelatase gene. cDNAs were synthesized using Epstein-Barr-virus-transformed lymphoblastoid cells from the proband. cDNA clones encoding ferrochelatase in the proband were isolated by amplification using the polymerase chain reaction. There were two sizes of ferrochelatase cDNAs; one was normal in size, the other being smaller. Sequence analysis of the abnormally sized cDNA clones revealed that they lacked exon 9 of the ferrochelatase gene. Genomic DNA analysis demonstrated that the proband had the abnormal allele and that it contained a G to A point mutation at the first position of the donor site of intron 9. An identical mutation was detected in the affected family members of the proband by allele-specific oligonucleotide hybridization analysis. EPP is inherited in an autosomal dominant manner in this family.  相似文献   

14.
15.
A unique proenkephalin converting enzyme specifically generating enkephalin was partially purified from lysates of adrenal chromaffin granules. The enzyme, whose molecular weight is estimated as ca. 220,000, is thiol-dependent protease, with optimal pH at around 5.5. The enzyme converts proenkephalin to enkephalins by cleaving specifically at the sites of consecutive basic amino acid residues. The enzyme also converts BAM-12P, an adrenal “big” Met-enkephalin, to Met-enkephalin in a similar manner. During the enzyme reaction, formation of [Arg6]-Met-enkephalin was not observed. Additionally, [Arg6]-enkephalins were not converted to enkephalins by the enzyme. Consequently, the enzyme was proved to be a unique converting enzyme distinct from either trypsin-like or carboxypeptidase B-like proteases.  相似文献   

16.
17.
18.
Erythropoietic protoporphyria (EPP) is a monogenic inherited disorder of the heme biosynthetic pathway due to ferrochelatase (FC) deficiency. EPP is generally considered to be transmitted as an autosomal dominant disease with incomplete penetrance, although autosomal recessive inheritance has been documented at the enzymatic and molecular level in some families. In the dominant form of EPP, statistical analysis of FC activities documented a significantly lower mean value in patients than in asymptomatic carriers, suggesting a more complex mode of inheritance. To account for these findings, we tested a multiallelic inheritance model in one EPP family in which the enzymatic data were compatible with this hypothesis. In this EPP family, the specific FC gene mutation was an exon 10 skipping (delta Ex10), resulting from a G deletion within the exon 10 consensus splice donor site. The segregation of all FC alleles within the family was followed using the delta Ex10 mutation and a new intragenic dimorphism (1520 C/T). mRNAs transcribed from each FC allele were then subjected to relative quantification by a primer extension assay and to absolute quantification by a ribonuclease protection assay. The data support the hypothesis that in this family the EPP phenotype results from the coinheritance of a low output normal FC allele and a mutant delta Ex10 allele.  相似文献   

19.
Erythropoietic protoporphyria (EPP), attributable to deficiency of ferrochelatase activity (FECH), is characterised mainly by cutaneous photosensitivity. To define the molecular defect in two EPP-affected siblings and their parents in a Swiss family, ferrochelatase cDNA was amplified by the polymerase chain reaction (PCR) and subjected to sequence analysis. A 5-bp deletion (T580G584) was identified on one allele of the ferrochelatase gene in both patients and their mother. Screening of the mutation among family members by RsaI digestion of PCR-amplified genomic DNA revealed autosomal dominant inheritance associated with abnormal protoporphyrin concentration and enzyme activity. We also isolated ferrochelatase cDNAs containing a 18-bp insertion (part of the intron 2 sequence) between exons 2 and 3; this corresponded to six extra amino acids (YESNIR) inserted between Arg-65 and Lys-66 of the known ferrochelatase. This isoform was identified initially in mRNAs derived from both alleles of the ferrochelatase gene in one patient. Its existence was confirmed in six additional EPP patients, in five out of seven controls, and in four different cell lines (fibroblast, muscle, hepatoma and myelogenous leukaemia). This isoform, roughly 20% of the total ferrochelatase mRNA, was generated through splicing at a second donor site in intron 2 and its presence was not linked to EPP.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号