首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The neuronal ceroid lipofuscinoses (NCLs, Batten disease) are recessively inherited neurodegenerative disorders that affect humans and other animals, characterised by brain atrophy and the accumulation of lysosome derived fluorescent storage bodies in neurons and most other cells. Common clinical signs include blindness, ataxia, dementia, seizures and premature death. The associated genes for six different human forms have been identified (CLN1, CLN2, CLN3, CLN5, CLN6 and CLN8), and three other human forms suggested (CLNs 4, 7 and 9). A form of NCL in Australian Devon cattle is caused by a single base duplication (c.662dupG) in bovine CLN5. This mutation causes a frame-shift and premature termination (p.Arg221GlyfsX6) which is predicted to result in a severely truncated protein, analogous to disease causing mutations in human Finnish late infantile variant NCL (CLN5), and a simple genetic diagnostic test has been developed. The symptoms and disease course in cattle also matches CLN5. Only one initiation site was found in the bovine gene, equivalent to the third of four possible initiation sites in the human gene. As cattle are anatomically and physiologically similar to humans with a human-like central nervous system and easy to maintain and breed, they provide a valuable alternative model for CLN5 studies.  相似文献   

2.

Background

The neuronal ceroid lipofuscinoses (NCL) are a heterogenous group of inherited progressive neurodegenerative diseases in different mammalian species. Tibetan Terrier and Polish Owczarek Nizinny (PON) dogs show rare late-onset NCL variants with autosomal recessive inheritance, which can not be explained by mutations of known human NCL genes. These dog breeds represent animal models for human late-onset NCL. In mice the chloride channel 3 gene (Clcn3) encoding an intracellular chloride channel was described to cause a phenotype similar to NCL.

Results

Two full-length cDNA splice variants of the canine CLCN3 gene are reported. The current canine whole genome sequence assembly was used for gene structure analyses and revealed 13 coding CLCN3 exons in 52 kb of genomic sequence. Sequence analysis of the coding exons and flanking intron regions of CLCN3 using six NCL-affected Tibetan terrier dogs and an NCL-affected Polish Owczarek Nizinny (PON) dog, as well as eight healthy Tibetan terrier dogs revealed 13 SNPs. No consistent CLCN3 haplotype was associated with NCL.

Conclusion

For the examined animals we excluded the complete coding region and adjacent intronic regions of canine CLCN3 to harbor disease-causing mutations. Therefore it seems to be unlikely that a mutation in this gene is responsible for the late-onset NCL phenotype in these two dog breeds.  相似文献   

3.
The neuronal ceroid lipofuscinoses (NCLs) are severe inherited neurodegenerative disorders affecting children. In this disease, lysosomes accumulate autofluorescent storage material and there is death of neurons. Five types of NCL are caused by mutations in lysosomal proteins (CTSD, CLN1/PPT1, CLN2/TTPI, CLN3 and CLN5), and one type is caused by mutations in a protein that recycles between the ER and ERGIC (CLN8). The CLN6 gene underlying a variant of late infantile NCL (vLINCL) was recently identified. It encodes a novel 311 amino acid transmembrane protein. Antisera raised against CLN6 peptides detected a protein of 30 kDa by Western blotting of human cells, which was missing in cells from some CLN6 deficient patients. Using immunofluorescence microscopy, CLN6 was shown to reside in the endoplasmic reticulum (ER). CLN6 protein tagged with GFP at the C-terminus and expressed in HEK293 cells was also found within the ER. Investigation of the effect of five CLN6 disease mutations that affect single amino acids showed that the mutant proteins were retained in the ER. These data suggest that CLN6 is an ER resident protein, the activity of which, despite this location, must contribute to lysosomal function.  相似文献   

4.
A heritable neurodegenerative disease of English Setters has long been studied as a model of human neuronal ceroid-lipofuscinosis (NCL). Megablast searches of the first build of the canine genome for potential causative genes located the CLN8 gene near the q telomere of canine chromosome 37, close to a marker previously linked to English Setter NCL. Sequence analysis of the coding region from affected dogs revealed a T-to-C transition in the CLN8 gene that predicts a p.L164P missense mutation. Leucine 164 is conserved in four other mammalian species. The C allele co-segregated with the disease phenotype in a two-generation English Setter family in a pattern consistent with autosomal recessive inheritance. All four NCL-affected family members were C/C homozygotes and all four obligate carriers were C/T heterozygotes; whereas, 103 unrelated dogs were all T/T homozygotes. These findings indicate that the CLN8 T-to-C transition is the likely cause of English Setter NCL.  相似文献   

5.
The neuronal ceroid-lipofuscinoses (NCL) is a group of neurodegenerative disorders characterized by epilepsy, visual failure, progressive mental and motor deterioration, myoclonus, dementia and reduced life expectancy. Classically, NCL-affected individuals have been classified into six categories, which have been mainly defined regarding the clinical onset of symptoms. However, some patients cannot be easily included in a specific group because of significant variation in the age of onset and disease progression. Molecular genetics has emerged in recent years as a useful tool for enhancing NCL subtype classification. Fourteen NCL genetic forms (CLN1 to CLN14) have been described to date. The variant late-infantile form of the disease has been linked to CLN5, CLN6, CLN7 (MFSD8) and CLN8 mutations. Despite advances in the diagnosis of neurodegenerative disorders mutations in these genes may cause similar phenotypes, which rends difficult accurate candidate gene selection for direct sequencing. Three siblings who were affected by variant late-infantile NCL are reported in the present study. We used whole-exome sequencing, direct sequencing and in silico approaches to identify the molecular basis of the disease. We identified the novel c.1219T>C (p.Trp407Arg) and c.1361T>C (p.Met454Thr) MFSD8 pathogenic mutations. Our results highlighted next generation sequencing as a novel and powerful methodological approach for the rapid determination of the molecular diagnosis of NCL. They also provide information regarding the phenotypic and molecular spectrum of CLN7 disease.  相似文献   

6.
7.
Model systems provide an invaluable tool for investigating the molecular mechanisms underlying the NCLs, devastating neurodegenerative disorders that affect the relatively inaccessible tissues of the central nervous system. These models have enabled the assessment of behavioural, pathological, cellular, and molecular abnormalities, and also allow for development and evaluation of novel therapies. This review highlights the relative advantages of the two available small vertebrate species, the mouse and zebrafish, in modelling NCL disease, summarising how these have been useful in NCL research and their potential for the development and testing of prospective disease treatments. A panel of mouse mutants is available representing all the cloned NCL gene disorders (Cathepsin D, CLN1, CLN2, CLN3, CLN5, CLN6, CLN8). These NCL mice all have progressive neurodegenerative phenotypes that closely resemble the pathology of human NCL. The analysis of these models has highlighted several novel aspects underlying NCL pathogenesis including the selective nature of neurodegeneration, evidence for glial responses that precede neuronal loss and identification of the thalamus as an important pathological target early in disease progression. Studies in mice have also highlighted an unexpected heterogeneity underlying NCL phenotypes, and novel potential NCL-like mouse models have been described including mice with mutations in cathepsins, CLC chloride channels, and other lysosome-related genes. These new models are likely to provide significant new information on the spectrum of NCL disease. Information on NCL mice is available in the NCL Mouse Model Database (). There are homologs of most of the NCL genes in zebrafish, and NCL zebrafish models are currently in development. This model system provides additional advantages to those provided by NCL mouse models including high-throughput mutational, pharmacogenetic and therapeutic technique analyses. Mouse and zebrafish models are an important shared resource for NCL research, offering a unique possibility to dissect disease mechanisms and to develop therapeutic approaches.  相似文献   

8.
The Neuronal Ceroid Lipofuscinoses (NCLs) are the most common group of neurodegenerative disorders of childhood. While mutations in eight different genes have been shown to be responsible for these clinically distinct types of NCL, the NCLs share many clinical and pathological similarities. We have conducted an exhaustive Basic Local Alignment Search Tool (BLAST) analysis of the human protein sequences for each of the eight known NCL proteins- CLN1, CLN2, CLN3, CLN5, CLN6, CLN7, CLN8 and CLN10. The number of homologous species per CLN-protein identified by BLAST searches varies depending on the parameters set for the BLAST search. For example, a lower threshold is able to pull up more homologous sequences whereas a higher threshold decreases this number. Nevertheless, the clade confines are consistent despite this variation in BLAST searching parameters. Further phylogenetic analyses on the appearance of NCL proteins through evolution reveals a different time line for the appearance of the CLN-proteins. Moreover, divergence of each protein shows a different pattern, providing important clues on the evolving role of these proteins. We present and review in-depth bioinformatic analysis of the NCL proteins and classify the CLN-proteins into families based on their structures and evolutionary relationships, respectively. Based on these analyses, we have grouped the CLN-proteins into common clades indicating a common evolving pathway within the evolutionary tree of life. CLN2 is grouped in Eubacteria, CLN1 and CLN10 in Viridiplantae, CLN3 in Fungi/ Metazoa, CLN7 in Bilateria and CLN5, CLN6 and CLN8 in Euteleostomi.  相似文献   

9.
10.
Dilated cardiomyopathy (DCM) is a common disease of the myocardium recognized in human, dog and experimental animals. Genetic factors are responsible for a large proportion of cases in humans, and 17 genes with DCM causing mutations have been identified. The genetic origin of DCM in the Dobermann dogs has been suggested, but no disease genes have been identified to date. In this paper, we describe the characterization and evaluation of the canine sarcoglycan delta (SGCD), a gene implicated in DCM in human and hamster. Bacterial artificial chromosomes (BACs) containing the canine SGCD gene were isolated with probes for exon 3 and exons 4-8 and were characterized by Southern blot analysis. BAC end sequences were obtained for four BACs. Three of the BACs overlapped and could be ordered relative to each other and the end sequences of all four BACs could be anchored on the preliminary assembly of the dog genome sequence (www. ensembl.org). One of the BACs of the partial contig was localized by fluorescent in situ hybridization to canine chromosome 4q22, in agreement with the dog genome sequence. Two highly informative polymorphic microsatellite markers in intron 7 of the SGCD gene were identified. In 25 DCM-affected and 13 non DCM-affected dogs seven different haplotypes could be distinguished. However, no association between any of the SGCD variants and the disease locus was apparent.  相似文献   

11.
The neuronal ceroid lipofuscinoses (NCLs, also known collectively as Batten disease) are a group of lysosomal storage disorders characterized by the accumulation of autofluorescent storage material in the brain and other tissues. A number of genes underlying various forms of NCL have been cloned, but the basis for the neurodegeneration in any of these is unknown. High levels of dolichol pyrophosphoryl oligosaccharides have previously been demonstrated in brain tissue from several NCL patients, but the specificity of the effect for the NCLs has been unclear. In the present study, we examine eight mouse models of lysosomal storage disorders by modern FACE and found striking lipid-linked oligosaccharide (LLO) accumulation in NCL mouse models (especially CLN1, CLN6, and CLN8 knockout or mutant mice) but not in several other lysosomal storage disorders affecting the brain. Using a mouse model of the most severe form of NCL (the PPT1 knockout mouse), we show that accumulated LLOs are not the result of a defect in LLO synthesis, extension, or transfer but rather are catabolic intermediates derived from LLO degradation. LLOs are enriched about 60-fold in the autofluorescent storage material purified from PPT1 knockoutmouse brain but comprise only 0.3% of the autofluorescent storage material by mass. The accumulation of LLOs is postulated to result from inhibition of late stages of lysosomal degradation of autophagosomes, which may be enriched in these metabolic precursors.  相似文献   

12.
The neuronal ceroid lipofuscinoses (NCLs) are a group of autosomal recessive neurodegenerative diseases characterized by the accumulation of autofluorescent lipopigment in various tissues and by progressive cell death in the brain and retina. The gene for variant late-infantile NCL (vLINCL), CLN6, was previously mapped to chromosome 15q21-23 and is predicted to be orthologous to the genes underlying NCL in nclf mice and in South Hampshire and Merino sheep. The gene underlying this disease has been identified with six different mutations found in affected patients and with a 1-bp insertion in the orthologous Cln6 gene in the nclf mouse. CLN6 encodes a novel 311-amino acid protein with seven predicted transmembrane domains, is conserved across vertebrates and has no homologies with proteins of known function. One vLINCL mutation, affecting a conserved amino acid residue within the predicted third hydrophilic loop of the protein, has been identified, suggesting that this domain may play an important functional role.  相似文献   

13.
Neuronal ceroid lipofuscinoses (NCLs) are neurodegenerative storage diseases characterized by mental retardation, visual failure, and brain atrophy as well as accumulation of storage material in multiple cell types. The diseases are caused by mutations in the ubiquitously expressed genes, of which six are known. Herein, we report that three NCL disease forms with similar tissue pathology are connected at the molecular level: CLN5 polypeptides directly interact with the CLN2 and CLN3 proteins based on coimmunoprecipitation and in vitro binding assays. Furthermore, disease mutations in CLN5 abolished interaction with CLN2, while not affecting association with CLN3. The molecular characterization of CLN5 revealed that it was synthesized as four precursor forms, due to usage of alternative initiator methionines in translation. All forms were targeted to lysosomes and the longest form, translated from the first potential methionine, was associated with membranes. Interactions between CLN polypeptides were shown to occur with this longest, membrane-bound form of CLN5. Both intracellular targeting and posttranslational glycosylation of the polypeptides carrying human disease mutations were similar to wild-type CLN5.  相似文献   

14.
Neuronal ceroid lipofuscinosis (NCL) is a neurodegenerative disease found in Border collie dogs, humans, and other animals. Disease gene studies in humans and animals provided candidates for the NCL gene in Border collies. A combination of linkage analysis and comparative genomics localized the gene to CFA22 in an area syntenic to HSA13q that contains the CLN5 gene responsible for the Finnish variant of human late infantile NCL. Sequencing of CLN5 revealed a nonsense mutation (Q206X) within exon 4 that correlated with NCL in Border collies. This truncation mutation should result in a protein product of a size similar to that of some mutations identified in human CLN5 and therefore the Border collie may make a good model for human NCL. A simple test was developed to enable screening of the Border collie population for carriers so the disease can be eliminated as a problem in the breed.  相似文献   

15.
Classical late-infantile neuronal ceroid lipofuscinosis (LINCL), a progressive and fatal neurodegenerative disease of childhood, results from mutations in a gene (CLN2) that encodes a protein with significant sequence similarity to prokaryotic pepstatin-insensitive acid proteases. We have developed a sensitive protease activity assay that allows biochemical characterization of the CLN2 gene product in various human biological samples, including solid tissues (brain and chorionic villi), blood (buffy coat leukocytes, platelets, granulocytes, and mononuclear cells), and cultured cells (lymphoblasts, fibroblasts, and amniocytes). The enzyme has a pH optimum of 3.5 and is rapidly inactivated at neutral pH. A survey of fibroblasts and lymphoblasts demonstrated that lack of activity was associated with LINCL arising from mutations in the CLN2 gene but not other neuronal ceroid lipofuscinoses (NCLs), including the CLN6 variant LINCL, classical infantile NCL, classical juvenile NCL, and adult NCL (Kufs' disease). A study conducted using blood samples collected from classical LINCL families whose affliction was confirmed by genetic analysis indicates that the assay can distinguish homozygotes, heterozygotes, and normal controls and thus is useful for diagnosis and carrier testing. Analysis of archival specimens indicates that several specimens previously classified as LINCL have enzyme activity and thus disease is unlikely to arise from mutations in CLN2. Conversely, a specimen previously classified as juvenile NCL lacks pepinase activity and is associated with mutations in CLN2. In addition, several animals with NCL-like neurodegenerative symptoms [mutant strains of mice (nclf and mnd), English setter, border collie, and Tibetan terrier dogs, sheep, and cattle] were found to contain enzyme activity and are thus unlikely to represent models for classical LINCL. Subcellular fractionation experiments indicate that the CLN2 protein is located in lysosomes, which is consistent with its acidic pH optimum for activity and the presence of mannose 6-phosphate. Taken together, these findings indicate that LINCL represents a lysosomal storage disorder that is characterized by the absence of a specific protease activity.  相似文献   

16.
The neuronal ceroid lipofuscinoses (NCL) are heterogeneous neurodegenerative disorders with typical autofluorescence material stored in tissues. Ten clinical NCL forms and eight causative genes are known. Mutations in CLN6 have been reported in roughly 30 patients, mostly in association with the variant late-infantile NCL (v-LINCL) phenotype. We screened CLN6 in 30 children from a cohort of 53 v-LINCL cases and revised their clinical and ultrastructural features. We detected 11 mutations, eight of which are novel, all predicting a direct impairing of the putative gene function. No clear-cut genotype-phenotype correlations were observed, with inter- and intra-familial variability evident for few recurrent mutations. Ultrastructural findings were suggestive of an impaired regulation of the autophagic vacuoles turnover. While expanding the array of CLN6 mutations, we showed that more than half of our v-LINCL cases lack a DNA confirmation and further molecular etiologies are to be searched.  相似文献   

17.
The canine tuberous sclerosis 2 (TSC2) gene has been mapped to canine chromosome 6 using a canine whole genome radiation hybrid panel. There is close linkage between canine TSC2 and the polycystic kidney disease 1 gene (PKD1), as has been observed in humans and other mammalian species. The gene responsible for the human juvenile form of neuronal ceroid lipofuscinosis (CLN3), maps close to TSC2 and PKD1 in humans, and is also syntenic in the dog. We further demonstrate linkage to a group of polymorphic markers assigned to canine chromosome 6 (CFA6).  相似文献   

18.
Mutations in the gene encoding CLN5 are the cause of Finnish variant late infantile Neuronal Ceroid Lipofuscinosis (NCL), and the gene encoding CLN5 is 1 of 10 genes (encoding CLN1 to CLN9 and cathepsin D) whose germ line mutations result in a group of recessive disorders of childhood. Although CLN5 localizes to the lysosomal compartment, its function remains unknown. We have uncovered an interaction between CLN5 and sortilin, the lysosomal sorting receptor. However, CLN5, unlike prosaposin, does not require sortilin to localize to the lysosomal compartment. We demonstrate that in CLN5-depleted HeLa cells, the lysosomal sorting receptors sortilin and cation-independent mannose 6-phosphate receptor (CI-MPR) are degraded in lysosomes due to a defect in recruitment of the retromer (an endosome-to-Golgi compartment trafficking component). In addition, we show that the retromer recruitment machinery is also affected by CLN5 depletion, as we found less loaded Rab7, which is required to recruit retromer. Taken together, our results support a role for CLN5 in controlling the itinerary of the lysosomal sorting receptors by regulating retromer recruitment at the endosome.  相似文献   

19.
Infantile and juvenile neuronal ceroid lipofuscinosis (NCLs) are progressive neurodegenerative disorders of childhood with distinct ages of clinical onset, but with a similar pathological outcome. Infantile and juvenile NCL are inherited in an autosomal recessive manner due to mutations in the CLN1 and CLN3 genes, respectively. Recently developed Cln1- and Cln3-knockout mouse models share similarities in pathology with the respective human disease. Using oligonucleotide arrays we identified reproducible changes in gene expression in the brains of both 10-week-old Cln1- and Cln3-knockout mice as compared to wild-type controls, and confirmed changes in levels of several of the cognate proteins by immunoblotting. Despite the similarities in pathology, the two mutations affect the expression of different, non-overlapping sets of genes. The possible significance of these changes and the pathological mechanisms underlying NCL diseases are discussed.  相似文献   

20.
The molecular basis of Kufs disease is unknown, whereas a series of genes accounting for most of the childhood-onset forms of neuronal ceroid lipofuscinosis (NCL) have been identified. Diagnosis of Kufs disease is difficult because the characteristic lipopigment is largely confined to neurons and can require a brain biopsy or autopsy for final diagnosis. We mapped four families with Kufs disease for whom there was good evidence of autosomal-recessive inheritance and found two peaks on chromosome 15. Three of the families were affected by Kufs type A disease and presented with progressive myoclonus epilepsy, and one was affected by type B (presenting with dementia and motor system dysfunction). Sequencing of a candidate gene in one peak shared by all four families identified no mutations, but sequencing of CLN6, found in the second peak and shared by only the three families affected by Kufs type A disease, revealed pathogenic mutations in all three families. We subsequently sequenced CLN6 in eight other families, three of which were affected by recessive Kufs type A disease. Mutations in both CLN6 alleles were found in the three type A cases and in one family affected by unclassified Kufs disease. Mutations in CLN6 are the major cause of recessive Kufs type A disease. The phenotypic differences between variant late-infantile NCL, previously found to be caused by CLN6, and Kufs type A disease are striking; there is a much later age at onset and lack of visual involvement in the latter. Sequencing of CLN6 will provide a simple diagnostic strategy in this disorder, in which definitive identification usually requires invasive biopsy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号