首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Using the methods of molecular cloning permitted to show that riboflavin operon of Bacillus subtilis contains four promoters. Three of them are functionally active in the Bacillus subtilis system. The main promoter of the operon with regulatory region was cloned in plasmid pPL603. Cells containing the constructed plasmid pGM32 are resistant to chloramphenicol. The level of resistance is regulated by concentration of riboflavin (the effector of operon). The following model of rib-operon has been proposed: (Formula: see text).  相似文献   

3.
In vitro mutagenesis with methylhydroxylamine and nitrosomethylurea was used to obtain a number of Bacillus subtilis mutants impaired in flavin-dependent response. Mutants displayed varying degree of flavin-dependent repression of riboflavin synthase and of 6,7-dimethyl-8-ribityl-lumasine accumulation. Single nucleotide substitutions were detected by DNA sequencing in all of the mutants, affecting the 48 b.p. target area between the mRNA start and the AUG of the first gene.  相似文献   

4.
5.
Numerous operator-constitutive mutants of riboflavin biosynthesis were selected. All of them map in a short region of the Bacillus subtilis chromosome. The yield of riboflavin synthetase from this mutant is different, but in most cases much lower than the maximal yield from a repressor minus strain. Our tentative explanation is a partial overlap of the sites for the adsorption of repressor and RNA-polymerase. Therefore the affinity to the transcribing enzyme is diminished in the operator constitutive strains. The affinity of the repressor-effector complex to the operator depends on the effector structure.  相似文献   

6.
Summary Seven mutations leading to riboflavin overproduction inBacillus subtilis were found to be linked to the markerdnaF133 (145° on theB. subtilis genetic map) by transformation. Cotransfer indexes (42.5%–61.7%) suggest that theribC mutations are alleles of the same locus. Results of transduction and transformation crosses suggest the following order of markers:pyrD26ts-6dnaF133ribCrecA1.  相似文献   

7.
8.
9.
10.
Deletion of the Bacillus subtilis sdh operon   总被引:2,自引:0,他引:2  
  相似文献   

11.
12.
13.
14.
15.
The Bacillus subtilis ureABC operon.   总被引:1,自引:0,他引:1       下载免费PDF全文
The Bacillus subtilis ureABC operon encodes homologs of the three subunits of urease enzymes of the family Enterobacteriaceae. Disruption of ureC prevented utilization of urea as a nitrogen source and resulted in a partial growth defect in minimal medium containing limiting amounts of arginine or allantoin as the sole nitrogen source.  相似文献   

16.
Nucleotide sequence of the Bacillus subtilis tryptophan operon   总被引:22,自引:0,他引:22  
D J Henner  L Band  H Shimotsu 《Gene》1985,34(2-3):169-177
In Bacillus subtilis, tryptophan biosynthesis is one of the most thoroughly characterized biosynthetic pathways. Recombinant DNA methodology has permitted a rapid characterization of the tryptophan (trp) gene cluster at the molecular level. In this report the nucleotide sequence of the six structural genes together with the intercistronic regions and flanking regulatory regions are presented.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号