共查询到20条相似文献,搜索用时 15 毫秒
1.
制备抗登革病毒NS1蛋白单克隆抗体,建立检测NS1的ELISA方法。表达1~4型登革病毒NS1蛋白,将1型NS1蛋白纯化后免疫BALB/c小鼠,通过杂交瘤技术制备单克隆抗体。经ELISA、Western blotting、间接免疫荧光筛选和鉴定单克隆抗体,进行纯化和HRP标记。通过鉴定每两株单抗之间是否存在竞争作用,选择非竞争单抗组合并建立NS1捕获法ELISA。结果获得7株高滴度抗NS1单抗,捕获法ELISA可以检出10ng/mL NS1。原核表达登革病毒NS1蛋白制备的单抗可以和天然病毒抗原反应,NS1捕获法ELISA可以用于登革病毒感染检测。 相似文献
2.
登革2型病毒非结构蛋白NS4B的原核表达、纯化及多克隆抗体制备 总被引:1,自引:0,他引:1
目的:原核表达、纯化登革2型病毒非结构蛋白NS4B,并制备其多克隆抗体,以研究其结构与功能。方法:扩增编码登革2型病毒NS4B的24-238位氨基酸残基的基因序列,并将其克隆到原核表达载体pGEX-4T-1,转化大肠杆菌BL21(DE3),IPTG诱导表达;采用蛋白浸提方法从SDS-PAGE胶中回收融合蛋白;用纯化后的融合蛋白免疫BALB/c鼠制备多克隆抗体,采用间接免疫荧光法检测抗体效价。结果:原核表达了NS4B-GST融合蛋白,并获得了其多克隆抗体,抗体效价为1:800。结论:登革2型病毒NS4B的24-238位氨基酸残基可诱导小鼠产生具有较高效价和特异性的多克隆抗体,这为研究NS4B的结构与功能奠定了基础。 相似文献
3.
Flaviviral NS2B is a required cofactor for NS3 serine protease activity and plays an important role in promoting functional NS2B-NS3 protease configuration and maintaining critical interactions with protease catalysis substrates. The residues D80DDG in West Nile virus (WNV) NS2B are important for protease activity. To investigate the effects of D80DDG in NS2B on protease activity and viral replication, the negatively charged region D80DD and the conserved residue G83 of NS2B were mutated (D80DD/E80EE, D80DD/K80KK, D80DD/A80AA, G83F, G83S, G83D, G83K, and G83A), and NS3 D75A was designated as the negative control. The effects of the mutations on NS2B-NS3 activity, viral translation, and viral RNA replication were analyzed using kinetic analysis of site-directed enzymes and a transient replicon assay. All substitutions resulted in significantly decreased enzyme activity and blocked RNA replication. The negative charge of D80DD is not important for maintaining NS2B function, but side chain changes in G83 have dramatic effects on protease activity and RNA replication. These results demonstrate that NS2B is important for viral replication and that D80DD and G83 substitutions prevent replication; they will be useful for understanding the relationship between NS2B and NS3. 相似文献
4.
Extensive accumulation of influenza virus NS1 protein in the nuclei causes effective viral growth in vero cells 总被引:1,自引:0,他引:1
We previously showed that modified A/Puerto Rico/8/34 (PR8) influenza master strain had improved viral rescue and growth properties in African green monkey kidney (Vero) cell line by introducing NS gene of Vero-adapted A/England/1/53 (vaEng53). In the present study, it was found that the NS1 protein derived from vaEng53 was extensively accumulated in the nuclei than that of PR8. This accumulation was caused by 7 amino acid differences in C-terminal region of NS1 protein. These results suggest that specific accumulation of NS1 protein may contribute to efficient viral replication in Vero cells. 相似文献
5.
登革热(DF)、登革出血热及登革休克综合征(DHF/DSS)是由登革病毒所致的两种不同临床类型的急性传染病,广泛流行于全球热带及亚热带地区。DHF/DSS以高热、出血、休克、高病死率为主要特征,近年来其发病率有迅速增加的趋势,已成为严重影响人类健康的公共卫生问题。迄今,DHF/DSS的发病机制仍不清楚,亦无有效的特异性预防方法[1]。登革病毒属于黄病毒科的黄病毒属,有Ⅰ、Ⅱ、Ⅲ、Ⅳ四个血清型,基因组为单股正链RNA,全长约11kb,编码三种结构蛋白和七种非结构蛋白。基因组顺序为5′CPrMENS1NS2aNS2bNS3N… 相似文献
6.
7.
8.
目的:对2006年广州流行登革热病原进行分离鉴定及生物学性质研究。方法:采用传代蚊细胞微量培养方法对2006年广州登革热病原进行分离,并通过脑内途径观察其对乳鼠的致病性;经间接免疫荧光和RT-PCR技术,对患者血清标本中的病毒特异抗体及新分离的病原体进行检测和鉴定;将此次分离的病原体与1980年分离的同型毒株进行生物学性质比较。结果:从57份患者血清标本中分离出10株病毒,在传代蚊细胞中可产生稳定的细胞病变并对乳鼠致病;其基因组为登革1型病毒特异的RNA分子,经鉴定为登革1型病毒;此次分离的登革1型病毒与1980年分离的同型毒株在致细胞产生病变的时间和严重程度,蚀斑的大小、形态以及致乳鼠发病的时间等生物学性质上有所不同。结论:2006年广州流行登革热病原为登革1型病毒,且与1980年分离的同型毒株在生物学性质方面存在明显差异。 相似文献
9.
Influenza A virus (H1N1), a genetic reassortment of endemic strains of human, avian and swine flu, has crossed species barrier to human and apparently acquired the capability of human to human transmission. Some strains of H5N1 subtype are highly virulent because NS1 protein inhibits antiviral interferon α/β production. Another protein NS2 mediates export of viral ribonucleoprotein from nucleus to the cytoplasm through export signal. In this paper, we have studied structure-function relationships of these proteins of H1N1 subtype and have determined the cause of their pathogenicity. Our results showed that non-conservative mutations slightly stabilized or destabi- lized structural domains of NS1 or NS1-dsRNA complex, hence slightly increased or decreased the function of NS1 protein and consequently enhanced or reduced the pathogenicity of the H1N1 virus. NS2 protein of different strains carried non-conservative mutations in different domains, resulting in slight loss of function. These mutations slightly decreased the pathogenicity of the virus. Thus, the results confirm the structure-function relationships of these viral proteins. 相似文献
10.
登革病毒 (Dengue virus,DENV) 是全球传播最为广泛的虫媒病毒,由于缺乏快速鉴别感染病毒血清型的诊断技术,导致异型交叉感染引起重症登革出血热病例居高不下。为实现免疫学方法快速鉴别诊断不同血清型DENV感染,本研究采用哺乳动物细胞293T表达并纯化了4种DENV血清型NS1蛋白,免疫小鼠后通过杂交瘤技术制备了针对NS1蛋白的单克隆抗体。利用酶联免疫吸附方法 (Enzyme-linked immunosorbent assay,ELISA)、间接免疫荧光法 (Indirect immunofluorescence assay,IFA)、免疫斑点杂交试验 (Dot blotting) 以及蛋白质免疫印迹试验 (Western blotting) 确认所制备的单克隆抗体能够有效识别天然病毒NS1以及重组NS1蛋白。获得的单克隆抗体包含2株可识别1–4型DENV NS1蛋白的通用型抗体及3株分别针对DENV-1、DENV-2和DENV-4的血清型特异抗体。以所制备的DENV NS1抗体为基础,采用双抗体夹心ELISA可快速鉴别不同血清型DENV。DENV血清型特异单克隆抗体的制备和甄别DENV血清型ELISA方法的建立为快速鉴别感染DENV血清型的临床诊断奠定了基础。 相似文献
11.
观察登革 2型PrM基因的pSFV重组甲病毒抗该型病毒的作用 ,进一步探讨登革 2型PrM基因的这种重组病毒对其它 3个血清型登革病毒复制的阻断作用 .采用体外转录和电穿孔 ,分别将构建的含正、反义PrM基因的重组质粒DNA和辅助载体DNA转录成RNA ,然后将这两种RNA共转染BHK细胞 ,进而包装成重组病毒颗粒 .再将激活的重组病毒感染细胞 ,分别用不同型病毒进行攻击 .然后通过免疫荧光法 ,观察对登革病毒复制的阻断作用 .结果表明 ,含登革 2型PrM基因的重组病毒不仅可阻断登革 2型病毒的复制 ,同样具有抑制其他 3个型病毒复制的能力 ,且抗登革 1、4型病毒的复制作用强于抗登革 3型病毒的作用 .用 10 3 TCID50 剂量的登革病毒攻击 ,含反义PrM基因的重组病毒可完全阻断登革 1、3、4型病毒的复制 .但含正义PrM基因的重组病毒对登革 3型病毒的复制不能完全阻断 .为探讨登革病毒防治新途径奠定了基础 相似文献
12.
Recently it has been reported that Japanese encephalitis virus (JEV)-specific RNAs can be synthesized in vitro in the subcellular fraction including outer-nuclear membrane (Takegami and Hotta, 1989). The results of Western blot analysis and indirect immunofluorescence test using two kinds of monospecific antisera against JEV nonstructural proteins NS3 and NS5 showed that NS3 and NS5 were membrane-associated proteins and formed the complex at the perinuclear site in the infected cells. Both antisera against NS3 and NS5 inhibited in vitro RNA synthesis. These results suggest that NS5 and NS3 play important role(s) in flavivirus RNA replication. 相似文献
13.
Muhammad Tahir ul Qamar Arooj Mumtaz Rabbia Naseem Amna Ali Tabeer Fatima Tehreem Jabbar Zubair Ahmad Usman Ali Ashfaq 《Bioinformation》2014,10(7):460-465
Dengue infection has turned into a serious health concern globally due to its high morbidity rate and a high possibility of increase
in its mortality rate on the account of unavailability of any proper treatment for severe dengue infection. The situation demands an
urgent development of efficient and practicable treatment to deal with Dengue virus (DENV). Flavonoids, a class of
phytochemicals present in medicinal plants, possess anti-viral activity and can be strong drug candidates against viruses. NS1
glycoprotein of Dengue virus is involved in its RNA replication and can be a strong target for screening of drugs against this virus.
Current study focuses on the identification of flavonoids which can block Asn-130 glycosylation site of Dengue virus NS1 to inhibit
viral replication as glycosylation of NS1 is required for its biological functioning. Molecular docking approach was used in this
study and the results revealed that flavonoids have strong potential interactions with active site of NS1. Six flavonoids
(Deoxycalyxin A; 3,5,7,3'',4''-pentahydroxyflavonol-3-O-beta-D-galactopyranoside; (3R)-3'',8-Dihydroxyvestitol; Sanggenon O;
Epigallocatechin gallate; Chamaejasmin) blocked the Asn-130 glycosylation site of NS1 and could be able to inhibit the viral
replication. It can be concluded from this study that these flavonoids could serve as antiviral drugs for dengue infections. Further
in-vitro analyses are required to confirm their efficacy and to evaluate their drug potency. 相似文献
14.
《Microbes and infection / Institut Pasteur》2017,19(12):587-596
The non-structural protein (NS1) of influenza A viruses (IAV) performs multiple functions during viral infection. NS1 contains two nuclear localization signals (NLS): NLS1 and NLS2. The NS1 protein is located predominantly in the nucleus during the early stages of infection and subsequently exported to the cytoplasm. A nonsense mutation that results in a large deletion in the carboxy-terminal region of the NS1 protein that contains the NLS2 domain was found in some IAV subtypes, including highly pathogenic avian influenza (HPAI) H7N9 and H5N1 viruses. We introduced different mutations into the NLS domains of NS1 proteins in various strains of IAV, and demonstrated that mutation of the NLS2 region in the NS1 protein of HPAI H5N1 viruses severely affects its nuclear localization pattern. H5N1 viruses expressing NS1 protein that is unable to localize to the nucleus are less potent in antagonizing cellular antiviral responses than viruses expressing wild-type NS1. However, no significant difference was observed with respect to viral replication and pathogenesis. In contrast, the replication and antiviral defenses of H1N1 viruses are greatly attenuated when nuclear localization of the NS1 protein is blocked. Our data reveals a novel functional plasticity for NS1 proteins among different IAV subtypes. 相似文献
15.
Jenny Kouretova M. Zouhir Hammamy Anton Epp Kornelia Hardes Stephanie Kallis Linlin Zhang 《Journal of enzyme inhibition and medicinal chemistry》2017,32(1):712-721
West Nile virus (WNV) and Dengue virus (DENV) replication depends on the viral NS2B-NS3 protease and the host enzyme furin, which emerged as potential drug targets. Modification of our previously described WNV protease inhibitors by basic phenylalanine analogs provided compounds with reduced potency against the WNV and DENV protease. In a second series, their decarboxylated P1-trans-(4-guanidino)cyclohexylamide was replaced by an arginyl-amide moiety. Compound 4-(guanidinomethyl)-phenylacetyl-Lys-Lys-Arg-NH2 inhibits the NS2B-NS3 protease of WNV with an inhibition constant of 0.11?µM. Due to the similarity in substrate specificity, we have also tested the potency of our previously described multibasic furin inhibitors. Their further modification provided chimeric inhibitors with additional potency against the WNV and DENV proteases. A strong inhibition of WNV and DENV replication in cell culture was observed for the specific furin inhibitors, which reduced virus titers up to 10,000-fold. These studies reveal that potent inhibitors of furin can block the replication of DENV and WNV. 相似文献
16.
Noisakran S Sengsai S Thongboonkerd V Kanlaya R Sinchaikul S Chen ST Puttikhunt C Kasinrerk W Limjindaporn T Wongwiwat W Malasit P Yenchitsomanus PT 《Biochemical and biophysical research communications》2008,372(1):67-72
Dengue virus nonstructural protein 1 (NS1) is a key glycoprotein involved in the production of infectious virus and the pathogenesis of dengue diseases. Very little is known how NS1 interacts with host cellular proteins and functions in dengue virus-infected cells. This study aimed at identifying NS1-interacting host cellular proteins in dengue virus-infected cells by employing co-immunoprecipitation, two-dimensional gel electrophoresis, and mass spectrometry. Using lysates of dengue virus-infected human embryonic kidney cells (HEK 293T), immunoprecipitation with an anti-NS1 monoclonal antibody revealed eight isoforms of dengue virus NS1 and a 40-kDa protein, which was subsequently identified by quadrupole time-of-flight tandem mass spectrometry (Q-TOF MS/MS) as human heterogeneous nuclear ribonucleoprotein (hnRNP) C1/C2. Further investigation by co-immunoprecipitation and co-localization confirmed the association of hnRNP C1/C2 and dengue virus NS1 proteins in dengue virus-infected cells. Their interaction may have implications in virus replication and/or cellular responses favorable to survival of the virus in host cells. 相似文献
17.
华南流感病毒NS1基因特性研究 总被引:7,自引:0,他引:7
为了解H9N2和H5N1亚型流行性感冒病毒株的NS1基因特性,采用RT-PCR方法测定了12株2000~2003年间在华南地区分离的禽流感病毒株的NS1基因核苷酸序列. 测序显示6株H9N2亚型流感病毒NS1基因开放阅读框(ORF)长654 bp,编码217个氨基酸. 6株H5N1亚型毒株NS1基因ORF长678 bp,编码225个氨基酸. 核苷酸和氨基酸同源性分析表明,同一亚型分离株之间有很高的同源性,而不同亚型的H9N2和H5N1毒株之间存在较大差异. BLAST分析表明,H5N1和H9N2亚型流感病毒分离株的NS1基因分别与近两年从香港特区和华南地区的鸭中分离的毒株A/Duck/Hong Kong/646.3/01 (H5N1)、A/Duck/Shantou/2143/01 (H9N2)有很高的亲缘关系. 该研究结果为进一步进行NS1功能研究奠定了基础. 相似文献
18.
19.
A型流感病毒NS1蛋白羧基端PL结构域影响NS1在细胞核内的定位 总被引:2,自引:0,他引:2
A型流感病毒NS1蛋白羧基端4个氨基酸可以与PDZ结构域(the domain of PSD95,Dig and ZO-1)相结合,称为PL结构域(PDZ ligand domain).对不同亚型或毒株的流感病毒而言,其NS1蛋白PL结构域的组成存在比较大的差异.有研究发现这种差异能够影响NS1与宿主细胞蛋白的相互作用进而影响病毒的致病力.为进一步探讨PL结构域对NS1蛋白生物学特性的影响,首先构建出4种不同亚型流感病毒(H1N1、H3N2、H5N1、H9N2)来源的NS1绿色荧光蛋白表达质粒.在此基础上,对野生型H3N2病毒NS1表达质粒进行人工改造,将其PL结构域缺失或者替换为其他亚型流感病毒的PL结构域,制备出4种重组NS1蛋白表达质粒.通过比较上述不同NS1蛋白在HeLa细胞中的定位情况发现,只有野生型H3N2病毒的NS1蛋白可以定位于核仁当中,而野生型H1N1、H5N1、H9N2病毒的NS1蛋白以及PL结构域缺失或替代的H3N2病毒NS1蛋白都不能定位于核仁.而通过比较上述NS1蛋白在流感病毒易感的MDCK细胞中的定位,进一步发现所有这些蛋白均不定位于核仁.上述结果表明:PL结构域的不同可以明显影响NS1蛋白在HeLa细胞核内的定位和分布,这有可能造成其生物学功能的差异.同时,NS1蛋白在细胞核内的定位还与宿主细胞的来源有着密切关系. 相似文献
20.
Expression and purification of E2/NS1 protein of hepatitis C virus and detection of anti-E2/NS1 antibodies in chronic liver disease patients 总被引:1,自引:0,他引:1
Glycoproteins on the surface of viral particles present the main target of neutralizing antibodies. The structural proteins of most Flaviviruses are known to elicit neutralizing antibodies and, thus, to help in both the natural resolution of the infection and the protection from challenge with homologous hepatitis C virus (HCV). Because such antigens are associated with the viral clearance in both humans and chimpanzees, we aimed to express the E2/NS1 protein of HCV and to study the role of anti-E2/NS1 antibodies in the natural resolution of HCV infection. The prevalence of anti-E2/NS1 antibodies to recombinant E2/NS1 protein was seen by Western blot in chronic liver disease patients (15 chronic hepatitis and 12 cirrhotic patients), who were positive for anti-HCV and negative for HBV infection. The study also included 2 negative controls (positive for HBV infection and negative for anti-HCV antibodies) and 2 healthy controls (negative for both HBV and HCV infection). Anti-E2/NS1 was present in 20% of the chronic hepatitis and 16% of the cirrhosis patients. None of the controls were positive for anti-E2/NS1 antibodies. Serum samples positive for anti-E2/NS1 antibodies were also positive for HCV RNA by RT/PCR. Accordingly, the presence of anti-E2/NS1 may have very little or no role in the natural resolution of HCV infection. 相似文献