首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The biosynthesis of a phytoalexin, beta-thujaplicin, in Cupressus lusitanica cell cultures can be stimulated by a yeast elicitor, H(2)O(2), or methyl jasmonate. Lipoxygenase activity was also stimulated by these treatments, suggesting that the oxidative burst and jasmonate pathway may mediate the elicitor-induced accumulation of beta-thujaplicin. The elicitor signalling pathway involved in beta-thujaplicin induction was further investigated using pharmacological and biochemical approaches. Treatment of the cells with calcium ionophore A23187 alone stimulated the production of beta-thujaplicin. A23187 also enhanced the elicitor-induced production of beta-thujaplicin. EGTA, LaCl(3), and verapamil pretreatments partially blocked A23187- or yeast elicitor-induced accumulation of beta-thujaplicin. These results suggest that Ca(2+) influx is required for elicitor-induced production of beta-thujaplicin. Treatment of cell cultures with mastoparan, melittin or cholera toxin alone or in combination with the elicitor stimulated the production of beta-thujaplicin or enhanced the elicitor-induced production of beta-thujaplicin. The G-protein inhibitor suramin inhibited the elicitor-induced production of beta-thujaplicin, suggesting that receptor-coupled G-proteins are likely to be involved in the elicitor-induced biosynthesis of beta-thujaplicin. Indeed, both GTP-binding activity and GTPase activity of the plasma membrane were stimulated by elicitor, and suramin and cholera toxin affected G-protein activities. In addition, all inhibitors of G-proteins and Ca(2+) flux suppressed elicitor-induced increases in lipoxygenase activity whereas activators of G-proteins and the Ca(2+) signalling pathway increased lipoxygenase activity. These observations suggest that Ca(2+) and G-proteins may mediate elicitor signals to the jasmonate pathway, and the jasmonate signalling pathway may then lead to the production of beta-thujaplicin.  相似文献   

2.
3.
Effects of some organic acids and monoterpenes on production of beta-thujaplicin were studied in Cupressus lusitanica suspension cultures. The fungal elicitor-induced biosynthesis of beta-thujaplicin was promoted by the feedings of malate, pyruvate, fumarate, succinate, and acetate. These results suggest some relationships between acetate/pyruvate metabolism and beta-thujaplicin biosynthesis, or between tricarboxylic acid cycle and beta-thujaplicin biosynthesis. Feedings of C. lusitanica suspension cultures with some monoterpenes inhibited elicitor-triggered beta-thujaplicin biosynthesis, but 2-carene and terpinyl acetate feedings significantly improved the beta-thujaplicin production of C. lusitanica suspension cultures. These results indicate a possible involvement of terpinyl acetate and 2-carene in beta-thujaplicin biosynthesis, as well as potential uses of these monoterpenes in large-scale beta-thujaplicin production.  相似文献   

4.
5.
6.
Yamada J  Fujita K  Sakai K 《Phytochemistry》2002,60(5):447-450
Suspension cell cultures of Cupressus lusitanica produce beta-thujaplicin, a tropolone found mostly in Cupressaceae heartwood. The factors controlling beta-thujaplicin accumulation in this cell culture system were investigated. Initial cell density of the cultures did not affect beta-thujaplicin levels, though initial addition of beta-thujaplicin suppressed its de novo production. When beta-thujaplicin accumulation reached a certain level (ca. 40 mg/l) in the medium, the cultures seemed to cease beta-thujaplicin production. However, beta-thujaplicin productivity was restored when the beta-thujaplicin-containing medium was exchanged for fresh medium; the formation of 2-methoxy-6-(methylethyl)cyclohepta-2,4,6-trien-1-one, an isomer of methylated beta-thujaplicin, in medium was also observed. These results suggest that beta-thujaplicin synthesis was regulated by product feedback mechanism in this cell line, and that excess accumulation of beta-thujaplicin is relieved by conversion of beta-thujaplicin to its methyl ether.  相似文献   

7.
Beta-thujaplicin Is a natural troponoid with strong antifungal, antiviral, and anticancer activities. Beta-thujaplicin production in yeast elicitor-treated Cupressus lusitanica cell culture and its relationships with reactive oxygen species (ROS) and nitric oxide (NO) production and hypersensitive cell death were investigated. Superoxide anion radical (O2*-) induced cell death and inhibited beta-thujaplicin accumulation, whereas hydrogen peroxide (H2O2) induced beta-thujaplicin accumulation but did not significantly affect cell death. Both elicitor and O2*- induced programmed cell death, which can be blocked by protease inhibitors, protein kinase inhibitors, and Ca2+ chelators. Elicitor-induced NO generation was nitric oxide synthase (NOS)-dependent. Inhibition of NO generation by NOS inhibitors and NO scavenger partly blocked the elicitor-induced beta-thujaplicin accumulation and cell death, and NO donors strongly induced cell death. Interaction among NO, H2O2, and O2*- shows that NO production and H2O2 production are interdependent, but NO and O2*- accumulation were negatively related because of coconsumption of NO and O2*-. NO- and O2*- -induced cell death required each other, and both were required for elicitor-induced cell death. A direct interaction between NO and O2*- was implicated in the production of a potent oxidant peroxynitrite, which might mediate the elicitor-induced cell death.  相似文献   

8.
Large amounts of the sesquiterpenoid capsidiol accumulated in the media of tobacco (Nicotiana tabacum L. cv KY14) cell suspension cultures upon addition of fungal elicitor. Capsidiol accumulation was proportional to the amount of elicitor added. The accumulation of capsidiol was preceded by a transient increase in the capsidiol de novo synthesis rate as measured by the incorporation of exogenous [14C]acetate. Changes in 3-hydroxy-3-methylglutaryl-CoA reductase activity (HMGR; EC 1.1.1.34), an enzyme of general isoprenoid metabolism, paralleled the changes in [14C]acetate incorporation into capsidiol. Incubation of the cell cultures with mevinolin, a potent in vitro inhibitor of the tobacco HMGR enzyme activity, inhibited the elicitor-induced capsidiol accumulation in a concentration dependent manner. [14C]Acetate incorporation into capsidiol was likewise inhibited by mevinolin treatment. Unexpectedly, [3H] mevalonate incorporation into capsidiol was also partially inhibited by mevinolin, suggesting that mevinolin may effect secondary sites of sesquiterpenoid biosynthesis in vivo beyond HMGR. The data indicated the importance of the induced HMGR activity for capsidiol production in elicitor-treated tobacco cell suspension cultures.  相似文献   

9.
Farmer EE 《Plant physiology》1985,78(2):338-342
Soybean (Glycine max L.) cells cultured in B5 medium produce extremely low amounts of lignin. However, modification in the growth medium, by lowering the concentration of NO3 and PO2−4, results in the lignification of these cells without affecting levels of cell wall-esterified 4-coumaric and ferulic acid. The production of an extracellular, macromolecular complex by the cultured soybean cells (Moore TS Jr 1973 Plant Physiol 51: 529-536) allows a rapid, nondestructive solubilization of the lignin which can be estimated by reaction with phloroglucinol in free solution. This system has been used to study the effects of fungal elicitor on the synthesis of lignin in soybean cells. The inclusion of very low levels of an elicitor fraction from the cell walls of Phytophthora megasperma in the medium in which lignification of the soybean cells occurs suppressed both the accumulation of extracellular lignin and phloroglucinol staining of the cell walls without affecting the levels of bound hydroxycinnamic acids. The activity profiles of phenylalanine ammonia-lyase (EC 4.3.1.5) and isoenzymes of 4-coumarate:CoA ligase (EC 6.2.1.12) were compared in lignifying and elicitor-treated cell cultures as was the activity of chalcone synthase, an enzyme of flavonoid biosynthesis. The measured activities of these enzymes in cell cultures treated with elicitor were considerably lower than in untreated cells.  相似文献   

10.
Effect of chitosan elicitor on growth and phenylethanoid glycosides (PeGs) accumulation in Cistanche deserticola cell suspension cultures was investigated. PeGs accumulation was dramatically improved by addition of selected chitosan at optimal elicitation conditions. Furthermore, a strategy of repeated addition of the chitosan elicitor for enhancing PeGs accumulation was developed. The chitosan elicitor of 10 mg l(-1)-medium repeatedly added on days 15 and 17 improved PeGs accumulation further, and the final PeGs production in the treated cell cultures of C. deserticola reached 364.6 mg l(-1), which was 3.4-fold higher than that of the control without elicitation. The increase of PeGs accumulation in C. deserticola cell suspension cultures was related to the increase of phenylalanine ammonium lyase activity stimulated by the chitosan elicitor.  相似文献   

11.
12.
13.
Twenty clones established from single cells of a suspension culture of Capsicum frutescens were maintained as callus and in suspension over a sixteen week culture period. These clones exhibited marked differences in growth, chlorophyll and chloroform-soluble phenolic content which became more apparent with increasing time in culture. Clones in suspension exhibited a more rapid change in morphology and biosynthetic activity than those cultured as callus. Elicitation increased PAL activity, reduced the incorporation of L-[U-14C] phenylalanine into the chloroform-soluble fraction of the culture medium and increased incorporation into the methanol-soluble fraction of the cells in ten suspension clones. Differences to elicitation were observed among clones; in particular the faster growing isolates incorporated more radioactive label into soluble phenolics that remain in the cells than those that are released into the medium. The implications of these results are discussed.Abbreviations SH Schenk & Hildebrandt - PAL phenylalanine ammonia-lyase - RGR relative growth rate - TCC total chlorophyll content - HPLC high performance liquid chromatography  相似文献   

14.
Cupressus lusitanica seedlings from open-pollinated seeds of 18 families were inoculated with day-old first instar Cinara cupressi. Aphid survival was used to determine the genetic basis and inheritance of resistance to the insect. There was marked variation in aphid survival both between and within families. An individual-tree narrow-sense heritability of 0.76 ± 0.30 shows strong additive genetic control which could allow effective selection and breeding for resistance. Resistant parents produced resistant progeny while susceptible parents produced susceptible progeny. There were notable exceptions as some susceptible parents produced highly resistant progeny, indicating that they had acquired pollen from resistant neighbours. Recovery of aphid damaged trees is evident implying that care should be taken in selecting for resistance. The strong additive variance and potentially high heritability indicate that one cycle of selection may yield a resistant population, while intraspecific crossing may give better results. Implications of the results in a C. lusitanica breeding programme are discussed.  相似文献   

15.
The biosynthesis of ethylene was examined in suspension-cultured cells of parsley (Petroselinum hortense) treated with an elicitor from cell walls of Phytophthora megasperma. Untreated cells contained 50 nmol g-1 of the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), and produced ethylene at a rate of about 0.5 nmol g-1 h-1. Within 2 h after addition of elicitor to the culture medium, the cells started to produce more ethylene and accumulated more ACC. Exogenously added ACC did not increase the rate of ethylene production in control or elicitor-treated cells, indicating that the enzyme converting ACC to ethylene was limiting in both cases. The first enzyme in ethylene biosynthesis, ACC synthase, was very rapidly and transiently induced by the elicitor treatment. Its activity increased more than tenfold within 60 min. Density labelling with 2H2O showed that this increase was caused by the denovo synthesis of the enzyme protein. Cordycepin and actinomycin D did not affect the induction of ACC synthase, indicating that the synthesis of new mRNA was not required. The peak of ACC-synthase activity preceded the maximal phenylalanine ammonia-lyase (PAL) activity by several hours. Exogenously supplied ethylene or ACC did not induce PAL. However, aminoethoxyvinylglycine, an inhibitor of ACC synthase, suppressed the rise in ethylene production in elicitor-treated cells and partially inhibited the induction of PAL. Exogenously supplied ACC reversed this inhibition. It is concluded that induction of the ethylene biosynthetic pathway is a very early symptom of elicitor action. Although ethylene alone is not a sufficient signal for PAL induction, the enhanced activity of ACC synthase and the ethylene biosynthetic pathway may be important for the subsequent induction of PAL.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AVG aminoethoxyvinylglycine - PAL phenylalanine ammonia-lyase  相似文献   

16.
Invasion of host cells by apicomplexan parasites is initiated when specialized secretory organelles called micronemes discharge protein complexes onto the parasite surface in response to a rise in parasite intracellular calcium levels. The microneme proteins establish interactions with host cell receptors, engaging the parasite with the host cell surface, and signal for the immediate exocytosis of another set of secretory organelles named the rhoptries. The rhoptry proteins reprogram the invaded host cell and participate in the formation of the parasitophorous vacuole in which the intracellular parasite resides and replicates. Disengagement of the invading parasite from the host cell receptors involves the action of at least one parasite plasma membrane rhomboid protease, which is concomitantly implicated in a checkpoint that signals the parasite to switch from an invasive to a replicative mode.  相似文献   

17.
谢秋玲  郭勇   《广西植物》1999,19(2):146-149
刺激剂(elicitor)在植物细胞培养中被用来作为提高次生代谢物产量的手段。文中概括介绍了微生物、寡聚糖、蛋白质、第二信使及其他物质作为刺激剂在植物细胞培养中的应用及其研究成果。  相似文献   

18.
The biosynthesis of silymarin, a potent antihepatotoxic compound, from the dried fruits of Silybum marianum L. Gaertn in hairy root cultures can be stimulated by a yeast extract elicitor. These results correlated with culture time, and the biosynthesis reached a maximum of 0.47 mg g?1 DW by 72 h after culture (2-fold higher than the control). Lipoxygenase activity and linoleic acid content were stimulated by this treatment, suggesting that the jasmonate pathway may mediate the elicitor-induced accumulation of silymarin. The H2O2 content increased 24 h after elicitation and did not have marked changes between 48 and 72 h. In addition, the tocopherol content (especially α- and δ-tocopherols) increased 72 h after elicitation in comparison with non-treated cultures. Ascorbate had trace changes during feeding time and was lower than the control. The antioxidant activity was assayed by the 1-1-diphenyl-2-picrylhydrazyl stable free radical method and results were calculated base on an IC50 that increased upon treatment, especially 24 h after treatment, with changes related to H2O2 content. These observations suggested that reactive oxygen species may mediate elicitor signals to the jasmonate pathway that lead to the production of silymarin.  相似文献   

19.
20.
Chemical or biological synthesis of plant secondary metabolites has attracted increasing interest due to their proven or assumed beneficial properties and health promoting effects. Resveratrol, a stilbenoid, naringenin, a flavanone, genistein, an isoflavone, and the flavonols kaempferol and quercetin have been shown to possess high nutritional and agricultural value. Four metabolically engineered yeast strains harboring plasmids with heterologous genes for enzymes involved in the biosynthesis of these compounds from phenylalanine have been constructed. Time course analyses of precursor utilization and end-product accumulation were carried out establishing the production of 0.29–0.31 mg/L of trans-resveratrol, 8.9–15.6 mg/L of naringenin, 0.1–7.7 mg/L of genistein, 0.9–4.6 mg/L of kaempferol and 0.26–0.38 mg/L of quercetin in defined media under optimal growth conditions. The recombinant yeast strains can be used further for the construction of improved flavonoid- and stilbenoid-overproducers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号