首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Native calf thymus DNA was sheared by sonication in a viscous solvent to the molecular-weight range from 3 × 104 to 3 × 105 daltons, and fractionated by gel chromatography. Number and weight average molecular weights (M?n and M?w) were determined for individual fractions by electron microscopy; the ratio M?w/M?n for the peak fraction is approximately 1.1. Sedimentation coefficients (s020,w) of these fractionated samples show an approximately linear dependence on the logarithm of the molecular weight M?w. This behavior is that expected for rodlike molecules, and is in quantitative agreement with the theory of Yamakawa and Fujii [(1973) Macromolecules 6 , 407–415] for the sedimentation coefficient of a wormlike chain with a persistence length of 625 Å, a diameter of 25 Å, and a mass per unit length of 195 daltons/Å. It appears that the wormlike coil model, without excluded volume, can represent the sedimentation behavior of DNA over the entire conformational range from rigid rod to flexible coil, using the above parameters. Equilibrium melting curves were determined for various fractions in aqueous 2.4 M tetraethylammonium bromide. A substantial broadening of the transition and decrease of the melting temperature were observed with decreasing molecular weight. Empirical expressions have been obtained relating both the transition temperature and breadth in this solvent to molecular weight.  相似文献   

2.
John G. Elias  Don Eden 《Biopolymers》1981,20(11):2369-2380
Transient electric birefringence measurements of the rotational diffusion constant of five short restriction fragments of the plasmid pBR322 show that the hydrodynamic length is independent of sodium ion concentration in the range of 0.2 to 2.5 mM. The fragments are too stiff to be modeled as wormlike molecules. The rotational relaxation times of the fragments, which range from 64 to 124 base pairs, have been used to calculate the rise per base pair using six different theoretical expressions for the length dependence of the rotational diffusion coefficient of straight cylinder. The best estimate for the rise per base pair of Na-DNA in solution is 3.3 ± 0.1 Å.  相似文献   

3.
In order to test the diffuse ion atmosphere polarization model recently developed by us, the effects of ionic strength, titrating with Mg2+ and Co(NH3)3+6, and coion charge on the electric polarizability of short fragments of DNA are investigated. The results are consistent with the predictions of the theory and show that the diffuse ion atmosphere polarization contributes significantly to the overall orientation of DNA. At low ionic strengths, we attempt to separate the total dipole moment into two components: one that agrees well with the Debye-Hückel ion atmosphere calculations, while the other, presumably due to condensed counterion polarization, appears to be substantially independent of the ionic strength. At higher salt concentrations, however, a simple separation into dipole components is not possible, perhaps due to a significant coupling of ion flows between the diffuse atmosphere and the condensed counterion layer.  相似文献   

4.
The transient electric birefringence of monodisperse oligonucleosomal DNA ranging from 145 to 990 base pairs has been studied. The orientation of fragments can be described in terms of an induced dipole moment with a small contribution of a permanent dipole. The electrical polarizability delta alpha was found to increase linearly with the DNA contour length. This unexpected dependence might result from a bent structure of DNA already considerable for very short segments. The observed delta alpha values agree with a segmental orientation of rigid subunits of length 13-18 nm as estimated in the elastic model of DNA with a kink angle of about 41 degrees.  相似文献   

5.
S S Wijmenga  A Maxwell 《Biopolymers》1986,25(11):2173-2186
Using electric birefringence we have examined the rotational diffusion of five short DNA fragments (55 to 256 base pairs) both in polyacrylamide gels as a function of gel concentration and in solution. The length dependence of the measured rotational relaxation times in the gels is in good agreement with the prediction from the Odijk theory for the dynamics of slightly flexible rods in a network. The rotational relaxation times were found to depend on the gel concentration, contrary to the prediction from the Odijk theory. Possible reasons for this observation are discussed. The birefringence decay curves for DNA fragments in the gel were single exponential only at small electric field strength.  相似文献   

6.
Electrical birefringence, electrical dichroism and polarisation of fluorescence in an electric field experiments have been performed at high fields on sonicated fragments of DNA labelled with Acridine Orange. The latter electrooptical effect gives access to the field dependence of the fourth moment of the orientation function while the two former give access to the field dependence of the second moment. The origin of the large departure from an E2 dependence at rather low degrees of orientation is extensively discussed. Following a suggestion of Shirai on the calculation of orientational averages for a saturated induced moment, we can show that this model rationalizes the existence of a linear E dependence of the orientation factor at intermediate fields and explains very well our experimental results. When applied to previous dichroic data at higher fields it shows that the low value of the dichroism at saturation introduced to fit with other models, in contradiction with the absence of base tilting in the B form of DNA, is not required for a quantitative fit with this new orientation mechanism. The transition from an E2 dependence at low fields to an E dependence at intermediate fields gives an estimate of the field required for the saturation of the ionic polarisation E approximately 6 kV/cm.  相似文献   

7.
B Chu  Z L Wang  R L Xu  M Lalande 《Biopolymers》1990,29(4-5):737-750
The pulsed-field gel electrophoresis (PFG) is a newly developing technique used in the fractionation of large DNA fragments. Advances in PFG demand a better understanding in the corresponding mechanisms of DNA dynamics in the gel network. Detailed experiments are needed to verify and to extend existing theoretical predictions as well as to find optimum conditions for efficient separation of large DNA fragments. In the present study, deformation of large DNA fragments (40-70 kilobase pairs) imbedded in agarose gels were investigated by using the transient electric birefringence (TEB) technique under both singular polarity and bipolarity electric pulses at low applied electric field strengths (E less than or equal to 5 V/cm). The steady-state optical retardation (delta s) of DNA molecules is linearly proportional to E2. At a given E, the amplitude of optical retardation [delta(t)] increases monotonically with the pulse width (PW) and then reaches a plateau value [delta(t = 0) = delta s] where t = 0 denotes the time when the applied field is turned off or reversed. The field-free decay time (tau-a few minutes) is several orders of magnitudes slower than that from previous TEB observations using high electric field strengths (E-kV/cm) and short pulse widths (PW-ms). The degree of deformation (stretching and orientation) and the time of restoration to the equilibrium conformation of overall DNA chains have been related to delta and tau. In field inversion measurements, exponentially rising and linearly falling of birefringence signals in the presence of forward/inverse applied fields were observed. The rising and falling of birefringence signals were reproducible under a sequence of alternating pulses. Comparison of our results with literature findings and discussions with theories are presented.  相似文献   

8.
Chloroplasts in higher magnetic fields align with their equatorial plane perpendicular to the field. Because of the nonrandom orientation of the chromophores in the membrane the fluorescence radiation will be partially polarized. The chloroplast concentration, magnetic field, and temperature dependence of the fluorescence polarization has been investigated. The results are compared with a simplified model calculation. It is shown that the concentration dependence can be related to the linear dichroism of the fluorescence radiation and self-adsorption. Taking these effects into account results in the calculation of a higher fluorescence polarization (FP) ratio and higher inclination of chlorophyll dipoles to the membrane plane. Analyzing the magnetic field dependence of the FP ratio, we conclude that in a magnetic field not only will be chloroplasts be aligned, but the thylakoid stacks as well. A decrease in the FP ratio was observed around 20 degrees C. It is suggested that this decrease reflects a phase transition in the photosynthetic membrane.  相似文献   

9.
N C Stellwagen 《Biopolymers》1991,31(13):1651-1667
The transient electric birefringence of two small DNA restriction fragments of the same molecular weight, one of which migrates anomalously slowly on polyacrylamide gels, has been investigated. Both fragments exhibit negative birefringence. The decay of the birefringence of the anomalously slowly migrating fragment is 8-9% faster than that of the normally migrating fragment. The faster birefringence decay of the anomalous fragment 12A persists under a variety of buffer conditions, suggesting that it is due primarily to static bending and/or curvature of fragment 12A. In reversing electric fields the absolute amplitude of the birefringence of fragments 12A and 12B decreased about 26% before returning to the steady state value. The minimum in the birefringence occurred faster than expected from the birefringence decay times and decreased with increasing electric field strength, suggesting that the minimum is due to a slow polarization of the ion atmosphere. For both fragments, the rise of the birefringence in the Kerr region is about 10% slower than the field-free decay. The buildup of the negative birefringence is preceded either by an interval when no birefringence is observed or by a small positively birefringent transient, suggesting that a small transverse ionic polarizability is also present. Both DNA fragments exhibit Kerr law behavior over most of the range of electric field strengths investigated. Analysis of the shapes of the saturation curves suggests that differences may exist in the polarization mechanisms of the two fragments.  相似文献   

10.
The interface electric polarizability of bacteria (charge dependent (ChD) and Maxwell-Wagner (MW) polarizabilities) gives information about their electric charge, determined by the structure and functional state. It is well known that the polarizability could be changed significantly by adding some substances to the suspension, and can be measured using an electro-optical (EO) method. There are some literature data, according to which the adding of ethanol decreases the electric polarizability of the cells. However the reason for the change in this parameter is not clear, as well as which component (ChD and/or MW) of polarizability has the main contribution. Generally the present work shows that the effect of ethanol is connected to the change of the internal (cytoplasm) MW polarizability and is mainly caused by increasing the cell membrane permeability. This results in an ionic flow through the membrane, which velocity and direction depends on the relative values of the inner (cytoplasm) and the outer medium ionic strength.  相似文献   

11.
We have studied aggregation/association of monodisperse DNA fragments (ranging from 30–90 base pairs) by steady-state fluorescence polarization of intercalculated ethidium. The method of excitation at different wavelengths in the ethidium absorption spectrum provides information about anisotropic twisting and tumbling mobility of the fragments. We find that end-over-end tumbling rather than axial spinning and internal twisting motions are affected by aggregation/association. The critical concentration for observing the effects of intermolecular interactions is approximately 5 mg DNA/mL at room temperature, independent of fragment length. Association is favored by low temperature and high (> 10 mM) concentration of Mg2+. From temperature-and salt-dependence experiments we infer that the “aggregates” are similar to those observed in a recently discovered DNA sol–gel transition [M. G. Fried and V. A. Bloomfield (1984) Biopolymers 23 , 2141–2155]. We also discuss possible arrangements of the fragments within the aggregates and their possible relation to formation of DNA liquid crystals.  相似文献   

12.
13.
Yasusi Yamamoto  Bacon Ke 《BBA》1981,636(2):175-184
Surface charge density of subchloroplast fragments fractionated from spinach by Triton X-100 treatment was estimated from cation-induced quenching of chlorophyll fluorescence, with the premise that the fluorescence yield is dependent on the surface electric potential of the preparations. Application of the Gouy-Chapman theory of diffuse double layer to the subchloroplast preparations, or treating the surface of the preparations under electric charge regulation conditions yielded a result suggesting the Photosystem II reaction-center preparation (TSF-IIa) to be more negatively charged than the Photosystem I reaction-center preparation (TSF-I). Isoelectric points of the subchloroplast fragments were determined by measuring 90° light scattering and more directly by gel isoelectric focusing. Isoelectric points of TSF-I and -IIa were estimated to be 4.8 and 4.0 from light-scattering experiments, and 4.5 and 4.1 from gel electrophoresis, respectively. The TSF-II preparation that contains both a light-harvesting complex and the reaction-center (core) complex showed a small cation-induced quenching of chlorophyll fluorescence. This fluorescence quenching may be ascribed mostly to the regulation of energy transfer in the preparation (Yamamoto, Y. and Ke, B. (1980) Biochim. Biophys. Acta 592, 296–302). Furthermore, the TSF-II preparation showed a broad and indefinite peak in light scattering in the pH range 3–8, suggesting that the complex probably carries a small amount of charge in this pH range. The physiological role of the membrane surface charge of the subchloroplast preparations in membrane structure and cation regulated processes in chloroplast is discussed.  相似文献   

14.
Mapping the order of DNA restriction fragments   总被引:3,自引:0,他引:3  
W M Fitch  T F Smith  W W Ralph 《Gene》1983,22(1):19-29
A straightforward method was designed for mapping the order of DNA restriction fragments obtained by a double and two single digestions, without the necessity of using a computer or a radioactive label. All possible solutions compatible with a pre-set level of error in the determination of sequence lengths are obtained. The primary assumptions are given, and the appropriate modifications of the algorithm are presented as a function of any assumptions one is unable (or unwilling) to make. Use of the method in connection with end-labeled fragments is also described.  相似文献   

15.
16.
DNA sequence analyzing and base pair separation techniques have attracted much attention, such as denaturing gradient gel electrophoresis, temperature gradient gel electrophoresis, and capillary electrophoresis. However, details of sequence separation mechanisms in electrophoresis are not clarified enough. Understanding and controlling flow characteristics of DNA are important not only for fundamental research but also for further developments of bio-nano technologies. In the present study, we theoretically discuss the relationship between diffusivity and hydrated structures of DNA fragments in water solvent using molecular dynamics methods. In particular, influence of base pair substitutions on the diffusivity is investigated, focusing on an adenine-thymine (AT) rich B–DNA decamer 5’-dCGTATATATA-3’. Consequently, it is found that water molecules that concentrate on dissociated base pairs form hydrated structures and change the diffusivity of DNA decamers. The diffusion coefficients are affected by the substitution of GC for AT because of the different manner of interactions between the base molecules and water solvent. This result predicts a possibility of base pair separation according to differences in the diffusivity.  相似文献   

17.
We use the cyclization of small DNA molecules, approximately 200 bp in length, to study conformational properties of DNA fragments with single-stranded gaps. The approach is extremely sensitive to DNA conformational properties and, being complemented by computations, allows a very accurate determination of the fragment's conformational parameters. Sequence-specific nicking endonucleases are used to create the 4-nt-long gap. We determined the bending rigidity of the single-stranded region in the gapped DNA. We found that the gap of 4 nt in length makes all torsional orientations of DNA ends equally probable. Our results also show that the gap has isotropic bending rigidity. This makes it very attractive to use gapped DNA in the cyclization experiments to determine DNA conformational properties, since the gap eliminates oscillations of the cyclization efficiency with the DNA length. As a result, the number of measurements is greatly reduced in the approach, and the analysis of the data is greatly simplified. We have verified our approach on DNA fragments containing well-characterized intrinsic bends caused by A-tracts. The obtained experimental results and theoretical analysis demonstrate that gapped-DNA cyclization is an exceedingly sensitive and accurate approach for the determination of DNA bending.  相似文献   

18.
Dielectric dispersion of DNA was studied in the frequency range 100 Hz–100 kHz at four different temperatures (6–30°C). The dielectric increment ε0–ε increased with the rise of temperature. The relaxation time, on the other hand, decreased. Both the increase in dielectric increment and the decrease in relaxation time could not be explained on the basis of the counterion polarization theory. Dipole moment was estimated from Kirkwood theory. It was found to decrease systematically with temperature. Even at 0°C there was a dipole moment of 104D.  相似文献   

19.
A procedure for the quantitation of reactions between specific members of a set of DNA restriction fragments is presented. Quantitation of the cohesive fragments in NruI nuclease digests of lambda DNA is used as an example. Restriction fragments are resolved on agarose gels and their amounts are estimated from densitometer scans of photographic negatives of ethidium bromide-stained gels. A linear relationship is found between the peak height of given fragment on the scan and the logarithm of the molecular weight of the fragment, arising in part from the stoichiometry of the digest; this relationship allows simple interpolation between the peak heights of the nonreacting fragments in each gel lane to determine the theoretical maximal amount of each reactive fragment in that gel lane. Similar procedures should be applicable to enzymatic ligation or to site-specific cleavage of specific restriction fragments or to autoradiographic detection of the fragments. Since each lane of the gel is analyzed independently, the method is largely self-correcting for variations in amounts applied to the gel.  相似文献   

20.
Dichroism decay curves of DNA fragments with chain lengths in the range of 179-256 bp show an amplitude inversion suggesting the existence of a positive dichroism component, when these fragments are dissolved at monovalent salt concentrations above approx. 5 mM and are exposed to field pulses with amplitudes and/or lengths above critical values. At the critical values, the unusual dichroism is reflected by an apparent acceleration of the decay curves, which can be fitted by single exponentials with time constants much below the values expected from the DNA contour lengths. The critical pulse amplitudes and lengths decrease with increasing DNA chain length and increasing salt concentration. The experimental data are consistent with results obtained by hydrodynamic and electric model calculations on smoothly bent DNA double helices. The DNA is represented by a string of overlapping beads, which is used to calculate the rotational diffusion tensor and the center of diffusion. The distribution of phosphate charges is asymmetric with respect to this center and thus gives rise to a substantial permanent dipole moment. The magnitude of this dipole moment is calculated as a function of DNA curvature and is used together with experimental values of polarizabilities for simulations of dichroism decay curves. The curves simulated for bent DNA show the same phenomenon as observed experimentally. The ionic strength dependence of the unusual dichroism is explained by an independently observed strong decrease of the polarizability with increasing salt concentration. The field strength dependence is probably due to field-induced bending of double helices driven by the change of the dipole moment. Although our calculations are on rigid models of DNA and thus any flexibility of the double helix has not been considered, we conclude that the essential part of our experimental results can be explained by our model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号