首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A procedure for the isolation and purification of two rat liver hydroxymethylglutaryl coenzyme A reductase phosphatases is described for the first time. Each of the preparations was obtained in two molecular forms of different molecular weights. The molecular weights of the holoenzymes were 480,000 and 310,000, respectively, while the molecular forms obtained after an ethanol treatment were in both cases 35,000. Several kinetic measurements were made which showed that the protein of Mr 35,000 was identical in both cases, irrespective of the holoenzymatic starting preparation used. The optimum pH of the three phosphatases ranged between 6.0 and 6.5. The Km of the phosphatases ranged between 6.5 and 19.5 nM when hydroxymethylglutaryl coenzyme A (HMG-CoA) reductase was the substrate. The three HMG-CoA reductase phosphatases, upon incubation, released 32P from 32P-labelled HMG-CoA reductase. This dephosphorylation also produces an activation of the HMG-CoA reductase activity.  相似文献   

2.
Hydroxymethylglutaryl coenzyme A reductase (HMGR) activity is a major factor in the regulation of cholesterol homeostasis. Enzyme activity is known to vary with age, sex, diurnal cycle, and dietary properties in rats. Mice are available in numerous genetic strains and could be a useful inexpensive animal model for studying diet and genetic interactions in the regulation of cholesterol metabolism. Obese and non-obese C57BL/6J, CBA/J, and obese and non-obese DW dbPas mice were subjected to variations in light cycle, feeding schedule, and pectin and fat composition of their diets. They were then killed by decapitation, and hepatic microsomal HMGR analyzed. The mice responded in the same ways as rats to light cycle, feeding pattern, and sex difference. They exhibited marked differences in HMGR activity due to age, genotype, strain, and diet variations. We conclude that mice will, indeed, offer an excellent animal model for the study of cholesterol metabolism regulation.  相似文献   

3.
A heat-stable protein inhibitor of the hydroxymethylglutaryl-CoA reductase phosphatase 2A activity has been identified and purified to homogeneity, as judged by polyacrylamide gel electrophoresis. The apparent molecular mass was 20,000 Da. The protein lost its inhibitory properties when incubated with trypsin or treated with ethanol. The inhibitor protein does not inhibit type 1 phosphatase when either phosphorylase or hydroxymethylglutaryl-CoA reductase is the substrate. In contrast, this protein inhibitor inhibits the rat liver type 2A phosphatase activity when hydroxymethylglutaryl-CoA reductase is the substrate but not when phosphorylase a is the substrate. The inhibitor protein is not activated by incubation with ATP and cyclic AMP-dependent protein kinase and it is not phosphorylated by glycogen synthase kinase-3. These results, together with those of the kinetic experiments, suggest that the reductase phosphatase inhibitor is distinct from protein phosphatase inhibitor-1 and inhibitor-2.  相似文献   

4.
A low-molecular-weight protein located in the cytosol of mouse preputial glands has been shown to stimulate the activity of a microsomal acyl coenzyme A (CoA) reductase in the gland. This cytoplasmic protein was stable to heating and lyophilization, but was destroyed by trypsin digestion. It was able to bind palmitoyl-CoA and gel elution behavior indicated it had a molecular weight of 10,000–12,000. The level of this stimulatory cytosolic protein and the activity of acyl-CoA reductase were shown to correlate with differentiation of the preputial gland during development of puberty in male mice; the acyl-CoA reductase activity first appeared at 4 weeks of age and increased dramatically up to 6 weeks of age. By 8 weeks, when sexual maturity was attained, the reductase activity decreased to that level found in mature male mice. The cytosol from the preputial glands of the youngest mice (3 weeks) contained sufficient heat-stable acyl-CoA binding protein to stimulate acyl-CoA reduction; however, the 3-week-old preputial gland microsomes had little or no acyl-CoA reductase activity. As the animal matured, the stimulatory capacity in the heat-treated cytosol increased, reaching a maximum at 6 weeks; by 8 weeks, the stimulatory capacity of the soluble fraction had decreased to that found in mature male mouse. Results of this study suggest that the concentration of acyl-CoA, cytoplasmic acyl-CoA binding protein, and acyl-CoA reductase activity regulate the level of fatty alcohols in vivo and that the reductase activity and binding protein have similar patterns of development during puberty.  相似文献   

5.
6.
A procedure for the preparation of highly radioactive homogeneous 32P-labeled 3-hydroxy-3-methylglutaryl coenzyme A reductase from rat liver microsomes has been developed. The enzymatic preparation obtained by this procedure has a specific radioactivity 50-fold higher than that reported in previous literature. The purified enzyme was judged to be homogeneous on the basis of comigration of enzyme activity with a single band of protein and 32P radioactivity on polyacrylamide gels. The 32P covalently bound to the reductase was removed upon incubation with purified hydroxymethylglutaryl coenzyme A reductase phosphatase from rat liver.  相似文献   

7.
8.
9.
10.
HMG-CoA reductase (HMGR) catalyzes a rate-limiting step in sterol biosynthesis and is a key control point in the feedback inhibition that regulates this pathway. Through the action of the membrane protein Insig, HMGR synthesis and degradation are regulated to maintain sterol homeostasis. The fission yeast Schizosaccharomyces pombe encodes homologs of HMGR and Insig called hmg1(+) and ins1(+), respectively. In contrast to the mammalian system, Ins1 regulates Hmg1 by a nondegradative mechanism involving phosphorylation of the Hmg1 active site. Here, we investigate the role of the Ins1-Hmg1 system in coupling glucose sensing to regulation of sterol biosynthesis. We show that Ins1-dependent Hmg1 phosphorylation is strongly induced in response to glucose withdrawal and that HMGR activity is correspondingly reduced. We also find that inability to activate Hmg1 phosphorylation under nutrient limiting conditions results in overaccumulation of sterol pathway intermediates. Furthermore, we show that regulation of Hmg1 phosphorylation requires the protein phosphatase 2A-related phosphatase Ppe1 and its regulator Sds23. These results describe a mechanism by which cells tune the rate of sterol synthesis to match nutrient availability.  相似文献   

11.
12.
Male golden hamsters fed a glucose diet as a model for cholesterol gallstone formation were used to investigate the effect of CS-514 on the lithogenicity of bile. Treatment with 0.05% (w/w) CS-514 in the diet for 1-4 weeks caused a decrease in plasma cholesterol and triacylglycerol levels. A marked increase in hepatic hydroxymethylglutaryl-CoA reductase activity in vitro and also an increased de novo cholesterol synthesis in the liver were induced by treatment with CS-514 for 1-4 weeks. The concentration of free cholesterol in liver microsomes and the cholesterol 7 alpha-hydroxylase activity were both decreased by treatment with CS-514 for 1 week, but were not affected by treatment for 4 weeks. The cholesterol output into bile and the lithogenic index of bile were double those of the control (glucose diet only) following treatment with CS-514 for 4 weeks, and the subsequent incidence of cholesterol gallstone formation was elevated. The content of free cholesterol and cholesterol ester in the liver was not affected by treatment with CS-514 for 4 weeks. These results suggest that long-term treatment with CS-514 causes a compensatory increase in the synthesis of hydroxymethylglutaryl-CoA reductase which leads to augmented hepatic de novo cholesterol synthesis and subsequent increased cholesterol output followed by an increase in the lithogenicity of bile. CS-514 apparently does not prevent cholesterol gallstone formation in those examples where the mechanism is thought to be due to augmented hepatic de novo cholesterol synthesis (type IV hyperlipidemia).  相似文献   

13.
The binding of folinic acid (5-formyl-5,6,7,8-tetrahydrofolate) to Lactobacillus casei dihydrofolate reductase has been measured. The natural 6S, alpha S diastereoisomer has a binding constant of 1.3 (+/- 0.6) X 10(8) M-1 at pH 6.0, 25 degrees C; the 6R, alpha S diastereoisomer binds approximately 10(4)-fold more weakly. The natural diastereoisomer of folinic acid binds negatively cooperatively with the coenzymes NADP+ and NADPH, binding 3 times more weakly in the presence of NADP+ and 600 times more weakly in the presence of NADPH than to the enzyme alone. Negative cooperativity has been unequivocally distinguished from competition by measurements of coenzyme binding as a function of folinic acid concentration, of the effects of folinic acid on the 1H and 31P chemical shifts of the bound coenzyme, and of the effects of folinic acid on the coenzyme dissociation rate constant. The latter experiments also give evidence for the coexistence of two slowly interconverting conformational forms of the ternary enzyme-coenzyme-folinic acid complex. Small changes in structure of the oxidized coenzymes have substantial effects on the cooperativity with folinic acid, with the thionicotinamide analogue showing positive rather than negative cooperativity. The changes in environment of the bound coenzyme produced by folinic acid, as revealed by 1H and 31P NMR, demonstrate clearly that the negative cooperativity shown by NADP+ and NADPH, respectively, arises by two structurally distinct mechanisms.  相似文献   

14.
15.
16.
The oxysterol-binding protein-related protein (ORP) family is essential to sterol transfer and sterol-dependent signal transduction in eukaryotes. The crystal structure of one ORP family member, yeast Osh4, is known in apo and sterol-bound states. In the bound state, a 29 residue N-terminal lid region covers the opening of the cholesterol-binding tunnel, preventing cholesterol exchange. Equilibrium and steered molecular dynamics (MD) simulations of Osh4 were carried out to characterize the mechanism of cholesterol exchange. While most of the structural core was stable during the simulations, the lid was partly opened in the apo equilibrium MD simulation. Helix α7, which undergoes the largest conformational change in the crystallized bound and apo states, is conformationally coupled to the opening of the lid. The movement of α7 helps create a docking site for donor or acceptor membranes in the open state. In the steered MD simulations of cholesterol dissociation, we observed complete opening of the lid covering the cholesterol-binding tunnel. Cholesterol was found to exit the binding pocket in a step-wise process involving (i) the breaking of water-mediated hydrogen bonds and van der Waals contacts within the binding pocket, (ii) opening of the lid covering the binding pocket, and (iii) breakage of transient cholesterol contacts with the rim of the pocket and hydrophobic residues on the interior face of the lid.  相似文献   

17.
The structural organization of the oxysterol receptor, postulated to be involved in the regulation of 3-hydroxy-3-methylglutaryl CoA reductase and cholesterol biosynthesis in mammalian cells, has been explored by limited proteolysis with trypsin, alpha-chymotrypsin, and endoproteinase GluC. Treatment with each of these proteases converts the receptor from a homodimer of approximately 95 kDa subunits to a 44-kDa form, based on hydrodynamic measurements by sucrose density gradient centrifugation and gel filtration chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of photoaffinity-labeled preparations indicates that the oxysterol binding site is on a 28-kDa fragment within the 44-kDa limit form of the receptor. The limit proteolytic form exhibits the high affinity and structural specificity for oxysterols of the native dimeric receptor with an increase in the rate constant of association for 25-hydroxycholesterol. The proteolytic form also shows an increased binding affinity for nonspecific DNA, but no sequence specificity for the oxysterol regulatory element from the reductase gene was detected.  相似文献   

18.
Mevinolin (lovastatin), a competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase, directly inhibited acyl-CoA cholesteryl acyltransferase in rabbit intestinal microsomes at a dose of 20 micrograms/ml or more. Lineweaver-Burk analysis showed a competitive type of inhibition with respect to oleoyl-CoA. In cultured intestinal Caco-2 cells, mevinolin reduced [14C]oleate incorporation into cholesteryl-esters by 86% of controls at doses as low as 0.1 micrograms/ml. However, in cells whose activity of acyl-CoA cholesteryl acyltransferase was stimulated 7-fold by 10 mM mevalonolactone, a significant inhibitory effect on cholesteryl-ester formation could not be detected, even at 40 micrograms/ml of mevinolin. In contrast, cells supplied with liposomal cholesterol or cholesterol derived from low-density lipoproteins showed a marked reduction of cholesteryl-ester formation in the presence of 10 or 0.1 micrograms/ml of mevinolin, respectively. It is concluded that the observed suppressive effects of mevinolin on cholesterol esterification in cultured Caco-2 cells are indirect and possibly caused by changes in the acyl-CoA cholesteryl acyltransferase substrate pool or intracellular cholesterol transport.  相似文献   

19.
Light-dark-cycled rats were fed a 3% cholesterol-supplemented diet at the beginning of the dark phase. Cholesterol-fed and control animals were taken at intervals throughout the following 12 h and the microsomal and solubilized hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase was isolated. Immunotitrations of this microsomal and solubilized enzyme were performed with a monospecific antibody to 3-hydroxy-3-methylglutaryl coenzyme A reductase. In contrast to the specific activity of the enzyme, which differs extremely during the diurnal cycle, the immunotitrations obtained from cholesterol-fed and control animals, yielded in identical antisera equivalence points. On the other hand, when the enzyme was phosphorylated in vitro, the antisera equivalence points corresponded to the alterations of the specific activity. In contrast to the results published by Higgins and Rudney ((1973) Nature New Biol. 246, 60-61), our data prove that even the in vivo short term changes in enzyme activity are due to changes in the quantity of enzyme rather than to a modulation of the catalytic activity.  相似文献   

20.
Rat liver microsomal hydroxymethylglutaryl CoA reductase is inactivated when microsomes are incubated with both ATP and Mg++ (1). Activity is fully restored with purified liver cytosolic phosphorylase phosphatase. The microsomal (Mg)ATP-dependent reductase inactivating enzyme (designated I) may be extracted and assayed in an I-deficient microsomal system. The soluble I preparation itself is inactivated with phosphorylase phosphatase. Inactive I can be reactivated in the presence of (Mg)ATP by an apparent cAMP-independent protein kinase in the microsomal extract.These findings are consistent with a model in which both hydroxymethylglutaryl CoA reductase and an associated protein kinase (I) are subject to reversible covalent modulation by phosphorylation-dephosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号