首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Theoretically, homogeneous environments favor the evolution of specialists whereas heterogeneous environments favor generalists. Canine distemper is a multi-host carnivore disease caused by canine distemper virus (CDV). The described cell receptor of CDV is SLAM (CD150). Attachment of CDV hemagglutinin protein (CDV-H) to this receptor facilitates fusion and virus entry in cooperation with the fusion protein (CDV-F). We investigated whether CDV strains co-evolved in the large, homogeneous domestic dog population exhibited specialist traits, and strains adapted to the heterogeneous environment of smaller populations of different carnivores exhibited generalist traits. Comparison of amino acid sequences of the SLAM binding region revealed higher similarity between sequences from Canidae species than to sequences from other carnivore families. Using an in vitro assay, we quantified syncytia formation mediated by CDV-H proteins from dog and non-dog CDV strains in cells expressing dog, lion or cat SLAM. CDV-H proteins from dog strains produced significantly higher values with cells expressing dog SLAM than with cells expressing lion or cat SLAM. CDV-H proteins from strains of non-dog species produced similar values in all three cell types, but lower values in cells expressing dog SLAM than the values obtained for CDV-H proteins from dog strains. By experimentally changing one amino acid (Y549H) in the CDV-H protein of one dog strain we decreased expression of specialist traits and increased expression of generalist traits, thereby confirming its functional importance. A virus titer assay demonstrated that dog strains produced higher titers in cells expressing dog SLAM than cells expressing SLAM of non-dog hosts, which suggested possible fitness benefits of specialization post-cell entry. We provide in vitro evidence for the expression of specialist and generalist traits by CDV strains, and fitness trade-offs across carnivore host environments caused by antagonistic pleiotropy. These findings extend knowledge on CDV molecular epidemiology of particular relevance to wild carnivores.  相似文献   

2.
Serologic evidence for canine distemper virus (CDV) has been described in grey wolves but, to our knowledge, virus strains circulating in wolves have not been characterized genetically. The emergence of CDV in several non-dog hosts has been associated with amino acid substitutions at sites 530 and 549 of the hemagglutinin (H) protein. We sequenced the H gene of wild-type canine distemper virus obtained from two free-ranging Iberian wolves (Canis lupus signatus) and from one domestic dog (Canis familiaris). More differences were found between the two wolf sequences than between one of the wolves (wolf 75) and the dog. The latter two had a very high nucleotide similarity resulting in identical H gene amino acid sequences. Possible explanations include geographic and especially temporal proximity of the CDV obtained from wolf 75 and the domestic dog, taken in 2007-2008, as opposed to that from wolf 3 taken more distantly in 1998. Analysis of the deduced amino acids of the viral hemagglutinin revealed a glycine (G) and a tyrosine (Y) at amino acid positions 530 and 549, respectively, of the partial signaling lymphocytic activation molecule (SLAM)-receptor binding region which is typically found in viral strains obtained from domestic dogs. This suggests that the CDV found in these wolves resulted from transmission events from local domestic dogs rather than from wildlife species.  相似文献   

3.
Infectious diseases, in particular canine distemper virus (CDV), are an important threat to the viability of wild carnivore populations. CDV is thought to be transmitted by direct contact between individuals; therefore, the study of species interactions plays a pivotal role in understanding CDV transmission dynamics. However, CDV often appears to move between populations that are ecologically isolated, possibly through bridge hosts that interact with both species. This study investigated how an introduced species could alter multihost interactions and act as a bridge host in a novel carnivore assemblage of domestic dogs (Canis familiaris), invasive American mink (Neovison vison), and threatened river otters (Lontra provocax) in southern Chile. We found that rural dogs interact with mink near farms whereas in riparian habitats, minks and river otters shared the same latrines with both species visiting sites frequently within time intervals well within CDV environmental persistence. No interactions were observed between dogs and otters at either location. Both dog and mink populations were serologically positive for CDV, making the pathogen transfer risk to otters a conservation concern. Altogether, introduced mink in this ecosystem have the potential to act as bridge hosts between domestic dogs and endangered carnivores.  相似文献   

4.
Understanding the genetic constraints on pathogen evolution will help to predict the emergence of generalist pathogens that can infect a range of different host genotypes. Here we show that generalist viral pathogens are more likely to emerge during coevolution between the bacterium Pseudomonas fluorescens and the lytic phage SBW25Φ2 than when the same pathogen is challenged to adapt to a nonevolving population of novel hosts. When phages were able to adapt to nonevolving novel hosts, the resulting phenotypes had relatively narrow host ranges compared with coevolved phages. Evolved (rather than coevolved) phages also had lower virulence, although they attained virulence similar to that of coevolved phages after continued adaptation to a nonevolving population of the same host. We explain these results by using sequence data showing that the evolution of broad host range is associated with several different amino acid substitutions and therefore occurs only through repeated rounds of selection for novel infectivity alleles. These findings suggest that generalist bacteriophages are more likely to emerge through long-term coevolution with their hosts than through spontaneous adaptation to a single novel host. These results are likely to be relevant to host-parasite systems where parasite generalism can evolve through the acquisition of multiple mutations or alleles, as appears to be the case for many plant-bacteria and bacteria-virus interactions.  相似文献   

5.
A hallmark of the human immunodeficiency virus 1 (HIV-1) is its rapid rate of evolution within and among its various subtypes. Two complementary hypotheses are suggested to explain the sequence variability among HIV-1 subtypes. The first suggests that the functional constraints at each site remain the same across all subtypes, and the differences among subtypes are a direct reflection of random substitutions, which have occurred during the time elapsed since their divergence. The alternative hypothesis suggests that the functional constraints themselves have evolved, and thus sequence differences among subtypes in some sites reflect shifts in function. To determine the contribution of each of these two alternatives to HIV-1 subtype evolution, we have developed a novel Bayesian method for testing and detecting site-specific rate shifts. The RAte Shift EstimatoR (RASER) method determines whether or not site-specific functional shifts characterize the evolution of a protein and, if so, points to the specific sites and lineages in which these shifts have most likely occurred. Applying RASER to a dataset composed of large samples of HIV-1 sequences from different group M subtypes, we reveal rampant evolutionary shifts throughout the HIV-1 proteome. Most of these rate shifts have occurred during the divergence of the major subtypes, establishing that subtype divergence occurred together with functional diversification. We report further evidence for the emergence of a new sub-subtype, characterized by abundant rate-shifting sites. When focusing on the rate-shifting sites detected, we find that many are associated with known function relating to viral life cycle and drug resistance. Finally, we discuss mechanisms of covariation of rate-shifting sites.  相似文献   

6.
Summary Rates of evolution for cytochromec over the past one billion years were calculated from a maximum parsimony dendrogram which approximates the phylogeny of 87 lineages. Two periods of evolutionary acceleration and deceleration apparently occurred for the cytochromec molecule. The tempo of evolutionary change indicated by this analysis was compared to the patterns of acceleration and deceleration in the ancestry of several other proteins The synchrony of these tempos of molecular change supports the notion that rapid genetic evolution accompanied periods of major adaptive radiations.Rates of change at different times in several structural-functional areas of cytochromec were also investigated in order to test the Darwinian hypothesis that during periods of rapid evolution, functional sites accumulate proportionately more substitutions than areas with no known function. Rates of change in four proposed functional groupings of sites were therefore compared to rates in areas of unknown function for several different time periods. This analysis revealed a significant increase in the rate of evolution for sites associated with the regions of cytochromec oxidase and reductase interaction during the period between the emergence of the eutherian ancestor to the emergence of the anthropoid ancestor.  相似文献   

7.
Diseases likely affect large carnivore demography and can hinder conservation efforts. We considered three highly contagious viruses that infect a wide range of domestic and wild mammals: canine parvovirus type 2 (CPV-2), canine distemper virus (CDV) and canine enteric coronaviruses (CECoV). Infection by either one of these viruses can affect populations through increased mortality and/or decreased general health. We investigated infection in the wolf populations of Abruzzo, Lazio e Molise National Park (PNALM), Italy, and of Mercantour National Park (PNM), France. Faecal samples were collected during one winter, from October to March, from four packs in PNALM (n?=?79) and from four packs in PNM (n?=?66). We screened samples for specific sequences of viral nucleic acids. To our knowledge, our study is the first documented report of CECoV infection in wolves outside Alaska, and of the large-scale occurrence of CPV-2 in European wolf populations. The results suggest that CPV-2 is enzootic in the population of PNALM, but not in PNM and that CECoV is episodic in both areas. We did not detect CDV. Our findings suggest that density and spatial distribution of susceptible hosts, in particular free-ranging dogs, can be important factors influencing infections in wolves. This comparative study is an important step in evaluating the nature of possible disease threats in the studied wolf populations. Recent emergence of new viral strains in Europe additionally strengthens the need for proactive monitoring of wolves and other susceptible sympatric species for viral threats and other impairing infections.  相似文献   

8.
Many parasites infect multiple hosts, but estimating the transmission across host species remains a key challenge in disease ecology. We investigated the within and across host species dynamics of canine distemper virus (CDV) in grizzly bears (Ursus arctos) and wolves (Canis lupus) of the Greater Yellowstone Ecosystem (GYE). We hypothesized that grizzly bears may be more likely to be exposed to CDV during outbreaks in the wolf population because grizzly bears often displace wolves while scavenging carcasses. We used serological data collected from 1984 to 2014 in conjunction with Bayesian state‐space models to infer the temporal dynamics of CDV. These models accounted for the unknown timing of pathogen exposure, and we assessed how different testing thresholds and the potential for testing errors affected our conclusions. We identified three main CDV outbreaks (1999, 2005, and 2008) in wolves, which were more obvious when we used higher diagnostic thresholds to qualify as seropositive. There was some evidence for increased exposure rates in grizzly bears in 2005, but the magnitude of the wolf effect on bear exposures was poorly estimated and depended upon our prior distributions. Grizzly bears were exposed to CDV prior to wolf reintroduction and during time periods outside of known wolf outbreaks, thus wolves are only one of several potential routes for grizzly bear exposures. Our modeling approach accounts for several of the shortcomings of serological data and is applicable to many wildlife disease systems, but is most informative when testing intervals are short. CDV circulates in a wide range of carnivore species, but it remains unclear whether the disease persists locally within the GYE carnivore community or is periodically reintroduced from distant regions with larger host populations.  相似文献   

9.
Parasites that are molecular mimics express proteins which resemble host proteins. This resemblance facilitates immune evasion because the immune molecules with the specificity to react with the parasite also cross‐react with the host's own proteins, and these lymphocytes are rare. Given this advantage, why are not most parasites molecular mimics? Here we explore potential factors that can select against molecular mimicry in parasites and thereby limit its occurrence. We consider two hypotheses: (1) molecular mimics are more likely to induce autoimmunity in their hosts, and hosts with autoimmunity generate fewer new infections (the “costly autoimmunity hypothesis”); and (2) molecular mimicry compromises protein functioning, lowering the within‐host replication rate and leading to fewer new infections (the “mimicry trade‐off hypothesis”). Our analysis shows that although both hypotheses may select against molecular mimicry in parasites, unique hallmarks of protein expression identify whether selection is due to the costly autoimmunity hypothesis or the mimicry trade‐off hypothesis. We show that understanding the relevant selective forces is necessary to predict how different medical interventions will affect the proportion of hosts that experience the different infection types, and that if parasite evolution is ignored, interventions aimed at reducing infection‐induced autoimmunity may ultimately fail.  相似文献   

10.
The spinal muscular atrophy (SMA) associated protein survival of motor neuron (SMN) is known to be a moonlighting protein: having one primary, ancestral function (presumed to be involvement in U snRNP assembly) along with one or more secondary functions. One hypothesis for the evolution of moonlighting proteins is that regions of a structure under relatively weak negative selection could gain new functions without interfering with the primary function. To test this hypothesis, we investigated sequence conservation and dN/dS, which reflects the selection acting on a coding sequence, in SMN and a related protein, splicing factor 30 (SPF30), which is not currently known to be multifunctional. We found very different patterns of evolution in the two genes, with SPF30 characterized by strong sequence conservation and negative selection in most animal taxa investigated, and SMN with much lower sequence conservation, and much weaker negative selection at many sites. Evidence was found of positive selection acting on some sites in primate genes for SMN. SMN was also found to have been duplicated in a number of species, and with patterns that indicate reduced negative selection following some of these duplications. There were also several animal species lacking an SMN gene.  相似文献   

11.
The most salient feature of influenza evolution in humans is its antigenic drift. This process is characterized by structural changes in the virus''s B-cell epitopes and ultimately results in the ability of the virus to evade immune recognition and thereby reinfect previously infected hosts. Until recently, amino acid substitutions in epitope regions of the viral haemagglutinin were thought to be positively selected for their ability to reduce antibody binding and therefore were thought to be responsible for driving antigenic drift. However, a recent hypothesis put forward by Hensley and co-workers posits that cellular receptor binding avidity is the dominant phenotype under selection, with antigenic drift being a side effect of these binding avidity changes. Here, we present a mathematical formulation of this new antigenic drift model and use it to show how rates of antigenic drift depend on epidemiological parameters. We further use the model to evaluate how two different vaccination strategies can impact antigenic drift rates and ultimately disease incidence levels. Finally, we discuss the assumptions present in the model formulation, predictions of the model, and future work that needs to be done to determine the consistency of this hypothesis with known patterns of influenza''s genetic and antigenic evolution.  相似文献   

12.
It is known that the conservation of protein-coding genes is associated with their sequences both various species, such as animals and plants. However, the association between microRNA (miRNA) conservation and their sequences in various species remains unexplored. Here we report the association of miRNA conservation with its sequence features, such as base content and cleavage sites, suggesting that miRNA sequences contain the fingerprints for miRNA conservation. More interestingly, different species show different and even opposite patterns between miRNA conservation and sequence features. For example, mammalian miRNAs show a positive/negative correlation between conservation and AU/GC content, whereas plant miRNAs show a negative/positive correlation between conservation and AU/GC content. Further analysis puts forward the hypothesis that the introns of protein-coding genes may be a main driving force for the origin and evolution of mammalian miRNAs. At the 5′ end, conserved miRNAs have a preference for base U, while less-conserved miRNAs have a preference for a non-U base in mammals. This difference does not exist in insects and plants, in which both conserved miRNAs and less-conserved miRNAs have a preference for base U at the 5′ end. We further revealed that the non-U preference at the 5′ end of less-conserved mammalian miRNAs is associated with miRNA function diversity, which may have evolved from the pressure of a highly sophisticated environmental stimulus the mammals encountered during evolution. These results indicated that miRNA sequences contain the fingerprints for conservation, and these fingerprints vary according to species. More importantly, the results suggest that although species share common mechanisms by which miRNAs originate and evolve, mammals may develop a novel mechanism for miRNA origin and evolution. In addition, the fingerprint found in this study can be predictor of miRNA conservation, and the findings are helpful in achieving a clearer understanding of miRNA function and evolution.  相似文献   

13.
We report the presence of four nuclear paralogs of a 380-bp segment of cytochrome b in callitrichine primates (marmosets and tamarins). The mitochondrial cytochrome b sequence and each nuclear paralog were obtained from several species, allowing multiple comparisons of rates and patterns of substitution both between mitochondrial and nuclear sequences and among nuclear sequences. The mitochondrial DNA had high overall rates of molecular evolution and a strong bias toward substitutions at third codon positions. Rates of molecular evolution among the nuclear sequences were low and constant, and there were small differences in substitution patterns among the nuclear clades which were probably attributable to the small number of sites involved. A novel method of phylogenetic reconstruction based on the large difference in rates of evolution at different codon positions among mitochondrial and nuclear clades was used to determine whether different nuclear paralogs represent independent transposition events or duplications following a single insertion. This method is generally applicable in cases where differences in pattern of molecular evolution are known, and it showed that at least three of the four nuclear clades represent independent transposition events. The insertion events giving rise to two of the nuclear clades predate the divergence of the callitrichines, whereas those leading to the other two nuclear clades may have occurred in the common ancestor of marmosets.  相似文献   

14.
Within butterflies and moths, adult hematophagy is limited to species within the vampire moth genus Calyptra. These moths are placed within the subfamily Calpinae, whose other members are known to exhibit a broad range of feeding behaviors including those that can be considered 'piercers' of fruits or other hosts and 'tear feeders'. Here, we reconstruct a phylogenetic hypothesis of Calpinae using molecular data to test whether hematophagy in Calyptra arose from plant or animal-related behaviors. We use a Bayesian method of ancestral state reconstruction to determine the most likely feeding behaviors for the subtribes and genera within this lineage.  相似文献   

15.
Understanding how evolution promotes pathogen emergence would aid disease management, and prediction of future host shifts. Increased pathogen infectiousness of different hosts may occur through direct selection, or fortuitously via indirect selection. However, it is unclear which type of selection tends to produce host breadth promoting pathogen emergence. We predicted that direct selection for host breadth should foster emergence by causing higher population growth on new hosts, lower among‐population variance in growth on new hosts, and lower population variance in growth across new hosts. We tested the predictions using experimentally evolved vesicular stomatitis virus populations, containing groups of host‐use specialists, directly selected generalists, and indirectly selected generalists. In novel‐host challenges, viruses directly selected for generalism showed relatively higher or equivalent host growth, lower among‐population variance in host growth, and lower population variance in growth across hosts. Thus, two of three outcomes supported our prediction that directly selected host breadth should favor host colonization. Also, we observed that indirectly selected generalists were advantaged over specialist viruses, indicating that fortuitous changes in host breadth may also promote emergence. We discuss evolution of phenotypic plasticity versus environmental robustness in viruses, virus avoidance of extinction, and surveillance of pathogen niche breadth to predict future likelihood of emergence.  相似文献   

16.
Emergence of a new disease in a novel host is thought to be a rare outcome following frequent pathogen transfers between host species. However, few opportunities exist to examine whether disease emergence stems from a single successful pathogen transfer, and whether this successful lineage represents only one of several pathogen transfers between hosts. We examined the successful host transfer and subsequent evolution of the bacterial pathogen Mycoplasma gallisepticum, an emergent pathogen of house finches (Haemorhous (formerly Carpodacus) mexicanus). Our principal goals were to assess whether host transfer has been a repeated event between the original poultry hosts and house finches, whether only a single host transfer was ultimately responsible for the emergence of M. gallisepticum in these finches, and whether the spread of the pathogen from east to west across North America has resulted in spatial structuring in the pathogen. Using a phylogeny of M. gallisepticum based on 107 isolates from domestic poultry, house finches and other songbirds, we infer that the bacterium has repeatedly jumped between these two groups of hosts but with only a single lineage of M. gallisepticum persisting and evolving in house finches; bacterial evolution has produced monophyletic eastern and western North American subclades.  相似文献   

17.
18.
Agriculture played a significant role in increasing the number of pathogen species and in expanding their geographic range during the last 10,000 years. We tested the hypothesis that a fungal pathogen of cereals and grasses emerged at the time of domestication of cereals in the Fertile Crescent and subsequently speciated after adaptation to its hosts. Rhynchosporium secalis, originally described from rye, causes an important disease on barley called scald, although it also infects other species of Hordeum and Agropyron. Phylogenetic analyses based on four DNA sequence loci identified three host-associated lineages that were confirmed by cross-pathogenicity tests. Bayesian analyses of divergence time suggested that the three lineages emerged between approximately 1200 to 3600 years before present (B.P.) with a 95% highest posterior density ranging from 100 to 12,000 years B.P. depending on the implemented clock models. The coalescent inference of demographic history revealed a very recent population expansion for all three pathogens. We propose that Rhynchosporium on barley, rye, and Agropyron host species represent three cryptic pathogen species that underwent independent evolution and ecological divergence by host-specialization. We postulate that the recent emergence of these pathogens followed host shifts. The subsequent population expansions followed the expansion of the cultivated host populations and accompanying expansion of the weedy Agropyron spp. found in fields of cultivated cereals. Hence, agriculture played a major role in the emergence of the scald diseases, the adaptation of the pathogens to new hosts and their worldwide dissemination.  相似文献   

19.
Reduced genetic variation among hosts may favour the emergence of virulent infectious diseases by enhancing pathogen replication and its associated virulence due to adaptation to a limited set of host genotypes. Here, we test this hypothesis using experimental evolution of a mouse-specific retroviral pathogen, Friend virus (FV) complex. We demonstrate rapid fitness (i.e. viral titre) and virulence increases when FV complex serially infects a series of inbred mice representing the same genotype, but not when infecting a diverse array of inbred mouse strains modelling the diversity in natural host populations. Additionally, a single infection of a different host genotype was sufficient to constrain the emergence of a high fitness/high virulence FV complex phenotype in these experiments. The potent inhibition of viral fitness and virulence was associated with an observed loss of the defective retroviral genome (spleen focus-forming virus), whose presence exacerbates infection and drives disease in susceptible mice. Results from our experiments provide an important first step in understanding how genetic variation among vertebrate hosts influences pathogen evolution and suggests that serial exposure to different genotypes within a single host species may act as a constraint on pathogen adaptation that prohibits the emergence of more virulent infections. From a practical perspective, these results have implications for low-diversity host populations such as endangered species and domestic animals.  相似文献   

20.
H Liu  Y Fu  J Xie  J Cheng  SA Ghabrial  G Li  X Yi  D Jiang 《PloS one》2012,7(7):e42147
Genome sequence of viruses can contribute greatly to the study of viral evolution, diversity and the interaction between viruses and hosts. Traditional molecular cloning methods for obtaining RNA viral genomes are time-consuming and often difficult because many viruses occur in extremely low titers. DsRNA viruses in the families, Partitiviridae, Totiviridae, Endornaviridae, Chrysoviridae, and other related unclassified dsRNA viruses are generally associated with symptomless or persistent infections of their hosts. These characteristics indicate that samples or materials derived from eukaryotic organisms used to construct cDNA libraries and EST sequencing might carry these viruses, which were not easily detected by the researchers. Therefore, the EST databases may include numerous unknown viral sequences. In this study, we performed in silico cloning, a procedure for obtaining full or partial cDNA sequence of a gene by bioinformatics analysis, using known dsRNA viral sequences as queries to search against NCBI Expressed Sequence Tag (EST) database. From this analysis, we obtained 119 novel virus-like sequences related to members of the families, Endornaviridae, Chrysoviridae, Partitiviridae, and Totiviridae. Many of them were identified in cDNA libraries of eukaryotic lineages, which were not known to be hosts for these viruses. Furthermore, comprehensive phylogenetic analysis of these newly discovered virus-like sequences with known dsRNA viruses revealed that these dsRNA viruses may have co-evolved with respective host supergroups over a long evolutionary time while potential horizontal transmissions of viruses between different host supergroups also is possible. We also found that some of the plant partitiviruses may have originated from fungal viruses by horizontal transmissions. These findings extend our knowledge of the diversity and possible host range of dsRNA viruses and offer insight into the origin and evolution of relevant viruses with their hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号