首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The presence of highly heat-resistant spores of Bacillus sporothermodurans in ultrahigh-temperature or sterilized consumer milk has emerged as an important item in the dairy industry. Their presence is considered undesirable since they hamper the achievement of commercial sterility requirements. By using a selective 30-min heat treatment at 100 degrees C, 17 Belgian dairy farms were screened to evaluate the presence, sources, and nature of potentially highly heat-resistant spores in raw milk. High numbers of these spores were detected in the filter cloth of the milking equipment and in green crop and fodder samples. About 700 strains were isolated after the selective heating, of which 635 could be screened by fatty acid methyl ester analysis. Representative strains were subjected to amplified ribosomal DNA restriction analysis, 16S rRNA gene sequencing, percent G+C content, and DNA-DNA reassociations for further identification. The strain collection showed a remarkable diversity, with representatives of seven aerobic spore-forming genera. Bacillus licheniformis and Bacillus pallidus were the most predominant species overall. Twenty-three percent of the 603 spore-forming isolates proved to belong to 18 separate novel species. These findings suggest that the selective heating revealed a pool of unknown organisms with a higher heat-resistant character. This study showed that high spore counts can occur at the dairy farm and that feed and milking equipment can act as reservoirs or entry points for potentially highly heat-resistant spores into raw milk. Lowering this spore load by good hygienic measures could probably further reduce the contamination level of raw milk, in this way minimizing the aerobic spore-forming bacteria that could lead to spoilage of milk and dairy products. Assessment and characterization of this particular flora are of great importance to allow the dairy or food industry to adequately deal with newly arising microbiological problems.  相似文献   

2.
Bacterial contamination of raw milk can originate from different sources: air, milking equipment, feed, soil, faeces and grass. It is hypothesized that differences in feeding and housing strategies of cows may influence the microbial quality of milk. This assumption was investigated through comparison of the aerobic spore-forming flora in milk from organic and conventional dairy farms. Laboratory pasteurized milk samples from five conventional and five organic dairy farms, sampled in late summer/autumn and in winter, were plated on a standard medium and two differential media, one screening for phospholipolytic and the other for proteolytic activity of bacteria. Almost 930 isolates were obtained of which 898 could be screened via fatty acid methyl ester analysis. Representative isolates were further analysed using 16S rRNA gene sequencing and (GTG)(5)-PCR. The majority of aerobic spore-formers in milk belonged to the genus Bacillus and showed at least 97% 16S rRNA gene sequence similarity with type strains of Bacillus licheniformis, Bacillus pumilus, Bacillus circulans, Bacillus subtilis and with type strains of species belonging to the Bacillus cereus group. About 7% of all isolates may belong to possibly new spore-forming taxa. Although the overall diversity of aerobic spore-forming bacteria in milk from organic vs. conventional dairy farms was highly similar, some differences between both were observed: (i) a relatively higher number of thermotolerant organisms in milk from conventional dairy farms compared to organic farms (41.2% vs. 25.9%), and (ii) a relatively higher number of B. cereus group organisms in milk from organic (81.3%) and Ureibacillus thermosphaericus in milk from conventional (85.7%) dairy farms. One of these differences, the higher occurrence of B. cereus group organisms in milk from organic dairy farms, may be linked to differences in housing strategy between the two types of dairy farming. However, no plausible clarification was found for the relatively higher number of thermotolerant organisms and the higher occurrence of U. thermosphaericus in milk from conventional dairy farms. Possibly this is due to differences in feeding strategy but no decisive indications were found to support this assumption.  相似文献   

3.
AIMS: To determine the aerobic spore composition and presence of Bacillus sporothermodurans spores in feed concentrate for dairy cattle. METHODS AND RESULTS: Six feed concentrate samples from five different farms were analysed. High levels of spores (up to 10(6) spores g(-1)) were found. Identification of 100 selected isolates was obtained by a combination of fatty acid methyl esters analysis, amplified ribosomal DNA restriction analysis and 16S rDNA sequencing. Ninety-seven isolates could be identified to the species level or assigned to a phylogenetic species group. Most of the isolates obtained after a heat treatment of 10 min at 80 degrees C were identified as members of the B. subtilis group (32 isolates), B. pumilus (25 isolates), B. clausii (eight isolates) and B. licheniformis (eight isolates). The isolates with very heat-resistant spores, obtained after a heat treatment of 30 min at 100 degrees C, were identified as members of the B. subtilis group (five isolates), B. sporothermodurans (three isolates), B. amyloliquefaciens (one isolate), B. oleronius (one isolate) and B. pallidus (one isolate). Bacillus cereus was present in each feed concentrate sample and was isolated using a selective mannitol egg yolk polymyxin agar medium. CONCLUSIONS: Feed concentrate for dairy cattle contains known as well as as yet unknown species of Bacillus and related genera with properties relevant to the dairy sector. SIGNIFICANCE AND IMPACT OF THE STUDY: The results formulate the hypothesis that feed concentrate can be a contamination source of spores, including those of B. sporothermodurans, for raw milk at the farm level.  相似文献   

4.
A recent example of a micro-organism causing undesired growth in consumer milk is Bacillus sporothermodurans producing highly heat-resistant spores (HRS) which may survive ultra-high temperature (UHT) treatment or industrial sterilization. Molecular typing showed a heterogeneous group of farm isolates (non-HRS strains), but a clonal group of UHT isolates from diverse European countries and other continents (HRS-clone) suggesting a common source. During a survey of Belgian dairy farms for the presence of potentially highly heat-resistant spore formers, high numbers of these spores were detected in filter cloth, green crop and fodder samples. The strain collection showed a high taxonomic diversity with 18 potentially new species and with Bacillus licheniformis and Geobacillus pallidus as predominating species overall. Seventeen B. sporothermodurans isolates were identified, mainly originating from feed concentrate. Heat resistance studies showed the UHT resistance of B. sporothermodurans spores present in industrially contaminated UHT milk, but a lower heat resistance of laboratory-grown strains (HRS and non-HRS). Hydrogen peroxide, used as sanitizer in the dairy industry, was found to induce higher heat resistance of laboratory-grown B. sporothermodurans strains to a certain level. This indicates that sublethal stress conditions may affect the heat resistance. By transmission electron microscopy, structural differences at the spore level were found between HRS and non-HRS strains. The data indicate that the attainment of extreme heat resistance is rather multifactorial.  相似文献   

5.
The seasonal variation in the spoilage of pasteurized products, especially double cream, by spore-forming bacteria was due to a number of factors. By far the most important was the seasonal variation in the types of organisms isolated from raw milks. Psychrotrophic spore-formers predominated in the summer-autumn months and these strains were able to germinate rapidly and grow in refrigerated dairy products. There was evidence that the concentration of one or more factors which promoted germination of psychrotrophic strains of Bacillus spp. in milk was higher during the summer than in the winter. This again may contribute to seasonal differences in spoilage by spore-forming bacteria. Post-heat treatment contamination by spores of Bacillus spp. may also be more prevalent in the summer-autumn period and evidence was obtained that spores associated with post-pasteurization contamination could germinate and grow more rapidly than those introduced into the product from the raw material. Thus, the increased spoilage of pasteurized products by Bacillus spp. observed in the June to October period may be due to a combination of factors. The relative contribution that each makes is not easily resolved.  相似文献   

6.
The seasonal variation in the spoilage of pasteurized products, especially double cream, by spore-forming bacteria was due to a number of factors. By far the most important was the seasonal variation in the types of organisms isolated from raw milks. Psychrotrophic spore-formers predominated in the summer-autumn months and these strains were able to germinate rapidly and grow in refrigerated dairy products. There was evidence that the concentration of one or more factors which promoted germination of psychrotrophic strains of Bacillus spp. in milk was higher during the summer than in the winter. This again may contribute to seasonal differences in spoilage by spore-forming bacteria. Post-heat treatment contamination by spores of Bacillus spp. may also be more prevalent in the summer-autumn period and evidence was obtained that spores associated with post-pasteurization contamination could germinate and grow more rapidly than those introduced into the product from the raw material. Thus, the increased spoilage of pasteurized products by Bacillus spp. observed in the June to October period may be due to a combination of factors. The relative contribution that each makes is not easily resolved.  相似文献   

7.
Bacterial spores in silage and raw milk   总被引:10,自引:0,他引:10  
Spore-forming bacteria can survive food-processing treatments. In the dairy industry, Bacillus and Clostridium species determine the shelf-life of a variety of heat-treated milk products, mainly if the level of post-process contamination is low. In order to minimize problems caused by bacterial spores in foods and food production processes a chain management approach, from raw materials, ingredients and environmental sources to final product storage conditions, is most effective. Silage is considered to be a significant source of contamination of raw milk with spores. PCR-RAPD fingerprinting and heat resistance studies of populations of aerobic spore-formers isolated from grass and maize silage and from raw milk confirmed this assumption. Prevention of outgrowth of aerobic spores in silage will contribute to reduction of the total spore load of raw milk. Therefore, it is important that the silage fermentation process is controlled. Application of cultures of lactic acid bacteria or chemical additives can aid silage fermentation and improve aerobic stability. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
《Microbiological research》2014,169(12):931-939
Bacillus endospores have a wide variety of important medical and industrial applications. This is an overview of the fundamental aspects of the life cycle, spore structure and factors that influence the spore resistance of spore-forming Bacillus. Bacillus atrophaeus was used as reference microorganism for this review because their spores are widely used to study spore resistance and morphology. Understanding the mechanisms involved in the cell cycle and spore survival is important for developing strategies for spore killing; producing highly resistant spores for biodefense, food and pharmaceutical applications; and developing new bioactive molecules and methods for spore surface display.  相似文献   

9.
One of the major concerns in the production of dairy concentrates is the risk of contamination by heat-resistant spores from thermophilic bacteria. In order to acquire more insight in the composition of microbial communities occurring in the dairy concentrate industry, a bar-coded 16S amplicon sequencing analysis was carried out on milk, final products, and fouling samples taken from dairy concentrate production lines. The analysis of these samples revealed the presence of DNA from a broad range of bacterial taxa, including a majority of mesophiles and a minority of (thermophilic) spore-forming bacteria. Enrichments of fouling samples at 55°C showed the accumulation of predominantly Brevibacillus and Bacillus, whereas enrichments at 65°C led to the accumulation of Anoxybacillus and Geobacillus species. Bacterial population analysis of biofilms grown using fouling samples as an inoculum indicated that both Anoxybacillus and Geobacillus preferentially form biofilms on surfaces at air-liquid interfaces rather than on submerged surfaces. Three of the most potent biofilm-forming strains isolated from the dairy factory industrial samples, including Geobacillus thermoglucosidans, Geobacillus stearothermophilus, and Anoxybacillus flavithermus, have been characterized in detail with respect to their growth conditions and spore resistance. Strikingly, Geobacillus thermoglucosidans, which forms the most thermostable spores of these three species, is not able to grow in dairy intermediates as a pure culture but appears to be dependent for growth on other spoilage organisms present, probably as a result of their proteolytic activity. These results underscore the importance of abiotic and microbiotic factors in niche colonization in dairy factories, where the presence of thermophilic sporeformers can affect the quality of end products.  相似文献   

10.
Psychrotolerant spore-forming bacteria represent a major challenge to the goal of extending the shelf life of pasteurized dairy products. The objective of this study was to identify prominent phylogenetic groups of dairy-associated aerobic sporeformers and to characterize representative isolates for phenotypes relevant to growth in milk. Analysis of sequence data for a 632-nucleotide fragment of rpoB showed that 1,288 dairy-associated isolates (obtained from raw and pasteurized milk and from dairy farm environments) clustered into two major divisions representing (i) the genus Paenibacillus (737 isolates, including the species Paenibacillus odorifer, Paenibacillus graminis, and Paenibacillus amylolyticus sensu lato) and (ii) Bacillus (n = 467) (e.g., Bacillus licheniformis sensu lato, Bacillus pumilus, Bacillus weihenstephanensis) and genera formerly classified as Bacillus (n = 84) (e.g., Viridibacillus spp.). When isolates representing the most common rpoB allelic types (ATs) were tested for growth in skim milk broth at 6°C, 6/9 Paenibacillus isolates, but only 2/8 isolates representing Bacillus subtypes, grew >5 log CFU/ml over 21 days. In addition, 38/40 Paenibacillus isolates but only 3/47 Bacillus isolates tested were positive for β-galactosidase activity (including some isolates representing Bacillus licheniformis sensu lato, a common dairy-associated clade). Our study confirms that Paenibacillus spp. are the predominant psychrotolerant sporeformers in fluid milk and provides 16S rRNA gene and rpoB subtype data and phenotypic characteristics facilitating the identification of aerobic spore-forming spoilage organisms of concern. These data will be critical for the development of detection methods and control strategies that will reduce the introduction of psychrotolerant sporeformers and extend the shelf life of dairy products.  相似文献   

11.
Psychrotolerant bacteria and their heat-resistant proteases play a major role in the spoilage of UHT-processed dairy products. Summer and winter raw milk samples were screened for the presence of such bacteria. One hundred and three proteolytic psychrotolerant bacteria were isolated, characterized by API tests, rep-PCR fingerprint analysis and evaluated for heat-resistant protease production. Twenty-nine strains (representing 79% of the complete collection) were further identified by 16S rRNA gene sequencing, rpoB gene sequencing and DNA–DNA hybridizations. A seasonal inter- and intra-species influence on milk spoilage capacity (e.g. growth rate and/or protease production) was demonstrated. Moreover, this polyphasic approach led to the identification of Pseudomonas fragi and Pseudomonas lundensis (representing 53% of all isolates) as predominant producers of heat-resistant proteases in raw milk. The role of Pseudomonas fluorescens , historically reported as important milk spoiler, could not unequivocally be established. The use of more reliable identification techniques and further revision of the taxonomy of P. fluorescens will probably result in a different perspective on its role in the milk spoilage issue.  相似文献   

12.
Thermophilic bacteria that form highly heat-resistant spores constitute an important group of spoilage bacteria of low-acid canned food. A PCR assay was developed in order to rapidly trace these bacteria. Three PCR primer pairs were designed from rRNA gene sequences. These primers were evaluated for the specificity and the sensitivity of detection. Two primer pairs allowed detection at the species level of Geobacillus stearothermophilus and Moorella thermoacetica/thermoautrophica. The other pair allowed group-specific detection of anaerobic thermophilic bacteria of the genera Thermoanaerobacterium, Thermoanaerobacter, Caldanerobium and Caldanaerobacter. After a single enrichment step, these PCR assays allowed the detection of 28 thermophiles from 34 cans of spoiled low-acid food. In addition, 13 ingredients were screened for the presence of these bacteria. This PCR assay serves as a detection method for strains able to spoil low-acid canned food treated at 55°C. It will lead to better reactivity in the canning industry. Raw materials and ingredients might be qualified not only for quantitative spore contamination, but also for qualitative contamination by highly heat-resistant spores.  相似文献   

13.
A PCR method was developed to detect spores of Bacillus sporothermodurans in 1, 10, and 100 ml of raw milk. Two primers were derived from a unique sequence after subtractive hybridization of B. sporothermodurans DNA with DNA of MB 397, a not yet identified spore-forming bacterium isolated from raw milk, closely related to B. sporothermodurans. Specific identification was proven on a large collection of Bacillus strains and on strains from relevant taxa. The detection of B. sporothermodurans in raw milk is based on activation, germination, and outgrowth of the spores, followed by PCR identification. Spores from 10 and 100 ml were concentrated by centrifugation after chemical extraction of the milk components. The total test takes 28 h. The detection limits are 9, 0.4, and 0.22 CFU/ml for 1, 10, and 100 ml, respectively.  相似文献   

14.
Effective killing of Bacillus anthracis spores is of paramount importance to antibioterrorism, food safety, environmental protection, and the medical device industry. Thus, a deeper understanding of the mechanisms of spore resistance and inactivation is highly desired for developing new strategies or improving the known methods for spore destruction. Previous studies have shown that spore inactivation mechanisms differ considerably depending upon the killing agents, such as heat (wet heat, dry heat), UV, ionizing radiation, and chemicals. It is believed that wet heat kills spores by inactivating critical enzymes, while dry heat kills spores by damaging their DNA. Many studies have focused on the biochemical aspects of spore inactivation by dry heat; few have investigated structural damages and changes in spore mechanical properties. In this study, we have inactivated Bacillus anthracis spores with rapid dry heating and performed nanoscale topographical and mechanical analysis of inactivated spores using atomic force microscopy (AFM). Our results revealed significant changes in spore morphology and nanomechanical properties after heat inactivation. In addition, we also found that these changes were different under different heating conditions that produced similar inactivation probabilities (high temperature for short exposure time versus low temperature for long exposure time). We attributed the differences to the differential thermal and mechanical stresses in the spore. The buildup of internal thermal and mechanical stresses may become prominent only in ultrafast, high-temperature heat inactivation when the experimental timescale is too short for heat-generated vapor to efficiently escape from the spore. Our results thus provide direct, visual evidences of the importance of thermal stresses and heat and mass transfer to spore inactivation by very rapid dry heating.  相似文献   

15.
Spore germination based assay involves the transformation of dormant spores of Bacillus stearothermophilus 953 into active vegetative cells. The inhibition of germination process specifically in presence of antibiotic residues was used as a novel approach for monitoring target contaminants in milk. The indicator organism i.e., B. stearothermophilus 953 was initially allowed to sporulate by seeding in sporulation medium and incubating at 55 °C for 18 ± 2 h. The spores exhibited a typical chain behavior as revealed through phase contrast microscopy. The minimal medium inoculated with activated spores was incubated at 64 °C for 2-3 h for germination and outgrowth in presence of specific germinant mixture containing dextrose, whey powder and skimmed milk powder added in specific ratio along with reconstituted milk as negative control and test milk samples. The change in color of the medium from purple to yellow was used as criteria for detection of antibiotic residues in milk. The efficiency of the developed assay was evaluated through a surveillance study on 228 samples of raw, pasteurized and dried milks and results were compared with AOAC approved microbial receptor assay. The presence of antibiotic level was 10.08 % at Codex maximum residual limit having false positive result only in 0.43 % of the samples. The results of the present investigation suggest that developed spore based assay can be a practical solution to dairy industry for its application at farm level, milk processing units, independent testing and R & D centres in order to comply with the legal requirements set by Codex.  相似文献   

16.
Germinated spores of Bacillus megaterium QM B1551 were irradiated with ultraviolet light, and spore-forming survivors were screened for germination requirements. Spore strains which failed to germinate in a variety of defined solutions germinative for spores of the parent strain were obtained. Mutant spores germinated readily in solutions containing yeast extract or one of numerous complex preparations. gamma-Aminobutyric acid, obtained from yeast extract by column chromatography, was shown to be required for germination by the mutant spores. gamma-Aminobutyric acid and l-alanine at final concentrations of 1 mm each, in solutions of KI (40 mm), equaled the potency of yeast extract (1 mg/ml) in the germination of the mutant spores. One of several other amino acids could be substituted, though less effectively, for l-alanine. alpha-Aminobutyric acid, beta-aminobutyric acid, beta-alanine, and 5-aminovaleric acid were ineffective substitutes for gamma-aminobutyric acid in mutant spore germination.  相似文献   

17.
The time/temperature profiles experienced by spores on the track from their natural sporulation environment to consumable food products may be highly diverse. Temperature has been documented as an important factor that may activate spores, i.e. potentiates spores to germinate. There is, however, limited knowledge about the relationship between the expected temperature history and the subsequent germination characteristics of bacterial spores. We show here that the germination rate of five different Bacillus spore populations, represented by strains of Bacillus cereus, Bacillus weihenstephanensis, Bacillus pumilus, Bacillus licheniformis and Bacillus subtilis could be increased following 1 week storage at moderately elevated temperatures, 30–33 °C, compared to spores stored at 3–8 °C. The results imply that spores contamination routes to foods, specifically the temperature history, could be highly relevant data in predictive modeling of food spoilage and safety. Activation at these moderately elevated temperatures may be a native form of spore activation in their natural habitats, knowledge that also could be useful in development of decontamination strategies for mildly heated foods.  相似文献   

18.
SUMMARY: A spore 'spectrum' is described of aerobic mesophiles capable of resisting different heat treatments. It is shown that B. licheniformis is the most common spore former found in bulk milk but since its spores are rapidly destroyed at 100°, the more heat resistant B. subtilis is the dominant surviving spore former in commercial sterilized milk. The thermal resistance of strains of B. subtilis and B. licheniformis isolated from different sources has been investigated and the strains of B. subtilis typed according to the behaviour of their spores when heated at 100°. All strains of B. licheniformis were destroyed more rapidly by boiling for 2 min than strains of B. subtilis but only those strains of the latter which showed some degree of heat activation were more resistant than B. licheniformis . The 'resistant' and heat activated strains of B. subtilis appear to be sparsely distributed in nature and were only isolated from sterilized milk where the heat treatment applied would tend to eliminate other strains. The spore content of bovine faeces was similar to that in bulk milk and the total spore content varied seasonally, the spore content of faeces being on the average a hundred times greater during indoor feeding than during the period when the cattle were fed outside. A faecal infection of the milk in the ratio of 1:104 would infect the milk with spores at about the same concentration as they are found in bulk raw milk, and it is suggested that bovine faeces could be a primary source of spore formers in milk supplies.  相似文献   

19.
AIMS: A new polymerase chain reaction (PCR) method for the identification of Bacillus sporothermodurans strains from sterilized or ultrahigh temperature-treated milk and milk products and from other non-milk sources and environments, including the dairy farm. METHODS AND RESULTS: Two strains from raw milk and feed concentrate could be allocated to B. sporothermodurans based on 16S rDNA sequencing and DNA-DNA hybridization results. Two specific PCR primers were derived from the 16S rRNA gene of B. sporothermodurans. CONCLUSIONS: The PCR identification method was validated using a collection of B. sporothermodurans strains from different sources and on a large collection of dairy and non-dairy Bacillus spp. and other relevant taxa. SIGNIFICANCE AND IMPACT OF THE STUDY: This PCR method was used as a screening method for strains with very heat-resistant endospores, isolated at the dairy farm level after heat treatment for 30 min at 100 degrees C. Seventeen strains isolated at the dairy farm were identified as B. sporothermodurans. They originated mainly from feed concentrate and also from soy, pulp and silage. The PCR identification method described here can, therefore, contribute to a better understanding of the route by which B. sporothermodurans contaminates raw and/or heat-treated milk.  相似文献   

20.
Thirty-eight strains of Bacillus sporothermodurans isolated from ultra-high-temperature (UHT)-treated milk or sterilized milk (UHT isolates) and from animal feed or raw milk (farm isolates) were characterized by automated ribotyping and by repetitive extragenic palindromic (REP)-PCR fingerprinting. By investigating the genetic relationships among isolates from these various sources, the relative importance of different contamination sources could be evaluated. The results of the separate clustering analyses of the PvuII and EcoRI ribopatterns and the REP-PCR patterns were largely consistent with each other and revealed the existence of two main clusters; there was one homogeneous group containing all (REP-PCR) or most (ribotyping) of the UHT isolates, and there was a second more diverse group comprising the farm isolates. A combined three-dimensional analysis of all data showed that three German UHT isolates did not belong to the compact group containing the majority of the UHT isolates. These results demonstrate that B. sporothermodurans is more heterogeneous than previously assumed and that most of the UHT isolates form a genetically distinct subgroup and are capable of producing highly heat-resistant spores. The close genetic relationship of these UHT isolates suggests a clonal origin of a few predominant strains of B. sporothermodurans that can be found in UHT-treated or sterilized milk products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号