首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
p27(Kip1) is an inducer of intestinal epithelial cell differentiation   总被引:2,自引:0,他引:2  
Constant renewal of the intestinal epitheliumis a highly coordinated process that has been subject to intenseinvestigation, but its regulatory mechanisms are still essentiallyunknown. In this study, we have demonstrated that forced expression ofthe cyclin-dependent kinase inhibitors (CKIs) p27Kip1 andp21Cip1/WAF1 in human intestinal epithelial cells led toexpression of differentiation markers at both the mRNA and proteinlevels. Cell differentiation was temporally dissociated from inhibitionof retinoblastoma protein phosphorylation and growth arrest, alreadyestablished 1 day after infection with recombinant adenoviruses.p27Kip1 proved significantly more efficient thanp21Cip1/WAF1 in induction of cell differentiation. Incontrast, forced expression of p16INK4a resulted in growtharrest without induction of differentiation markers. These resultsimplicate both p27Kip1 and p21Cip1/WAF1 in thedifferentiation-timing process, but p21Cip1/WAF1 may actindirectly by increasing p27Kip1 levels. These results alsosuggest that induction of intestinal epithelial cell differentiation byCKIs is not related to their effects on the cell cycle and may involveinteractions with cellular components other than cyclins andcyclin-dependent kinases.

  相似文献   

2.
The functional significance of the cyclin-dependent kinase inhibitor (CDKI) p21Cip1/WAF1 in paclitaxel-mediated lethality was examined in p53-null human leukemia cells (U937 and Jurkat). In these cells, paclitaxel exposure failed to induce p21Cip1/Waf1 expression. Nevertheless, stable expression of U937 cells with a p21Cip1/WAF1 antisense construct blocked paclitaxel-induced G2M arrest and significantly, albeit modestly, increased mitochondrial injury, caspase activation, apoptosis, and loss of clonogenic potential. These protective effects were less than those observed in cells exposed to the antimetabolite ara-C. Consistent with these results, enforced expression of p21Cip1/WAF1 in Jurkat cells transfected with a construct driven by a doxycycline-responsive promoter increased the percentage of cells arrested in G2M, but attenuated paclitaxel-mediated mitochondrial injury and apoptosis. Unexpectedly, enforced expression of p21Cip1/WAF1 diminished paclitaxel-mediated inactivation of ERK, and reduced paclitaxel-induced activation of JNK as well as Bcl-2 phosphorylation. Together, these findings suggest that the CDKI p21Cip1/WAF1 modestly but significantly protects p53-null human leukemia cells from paclitaxel-mediated lethality, and raise the possibility that p21Cip1/WAF1-associated perturbations in signal transduction pathways as well as Bcl-2 phosphorylation status may play a role in this phenomenon.  相似文献   

3.
Fucoxanthin, a natural carotenoid, has been reported to have antitumorigenic activity in mouse colon, skin and duodenum models. The present study was designed to evaluate the molecular mechanisms of fucoxanthin against colon cancer using the human colon adenocarcinoma cell lines. Fucoxanthin reduced the viability of WiDr cells in a dose-dependent manner accompanied by the induction of cell cycle arrest during the G0/G1 phase at 25 microM and apoptosis at 50 microM. Fucoxanthin at 25 microM inhibited the phosphorylation of the retinoblastoma protein (pRb) at Ser780 and Ser807/811 24 h after treatment without changes in the protein levels of the D-types of cyclin and cyclin-dependent kinase (cdk) 4, whose complexes are responsible for the phosphorylation of pRb at these sites. A cdk inhibitory protein, p21WAF1/Cip1 increased 24 h after the treatment with 25 microM of fucoxanthin, but not p27Kip1. In addition, the mRNA of p21WAF1/Cip1 also increased in a dose-dependent manner. According to the experiments using the isogenic human colon adenocarcinoma cell lines, fucoxanthin failed to induce G0/G1 arrest in the p21-deficient HCT116 cells, but not in HCT116 wild-type cells. All of these findings showed that fucoxanthin inhibited proliferation of colon cancer cells. The inhibitory mechanism is due to the cell cycle arrest during the G0/G1 phase mediated through the up-regulation of p21WAF1/Cip1, which may be related to the antitumorigenic activity.  相似文献   

4.
K cyclin encoded by Kaposi's sarcoma-associated herpesvirus confers resistance to the cyclin-dependent kinase (cdk) inhibitors p16Ink4A, p21Cip1, and p27Kip1 on the associated cdk6. We have previously shown that K cyclin expression enforces S-phase entry on cells overexpressing p27Kip1 by promoting phosphorylation of p27Kip1 on threonine 187, triggering p27Kip1 down-regulation. Since p21Cip1 acts in a manner similar to that of p27Kip1, we have investigated the subversion of a p21Cip1-induced G1 arrest by K cyclin. Here, we show that p21Cip1 is associated with K cyclin both in overexpression models and in primary effusion lymphoma cells and is a substrate of the K cyclin/cdk6 complex, resulting in phosphorylation of p21Cip1 on serine 130. This phosphoform of p21Cip1 appeared unable to associate with cdk2 in vivo. We further demonstrate that phosphorylation on serine 130 is essential for K cyclin-mediated release of a p21Cip1-imposed G1 arrest. Moreover, we show that under physiological conditions of cell cycle arrest due to elevated levels of p21Cip1 resulting from oxidative stress, K cyclin expression enabled S-phase entry and was associated with p21Cip1 phosphorylation and partial restoration of cdk2 kinase activity. Thus, expression of the viral cyclin enables cells to subvert the cell cycle inhibitory function of p21Cip1 by promoting cdk6-dependent phosphorylation of this antiproliferative protein.  相似文献   

5.
The cyclin-dependent kinase inhibitors, p21(Cip1) and p27(Kip1), play an important role in the regulation of progression through G(1) to S phase in mammalian cells. Here we report that confluent 3T3 cells expressed p21(Cip1) and p27(Kip1) predominantly in the nucleus, and the level of both proteins declined as the cells entered the cell cycle and progressed through G(1) in response to serum growth factors. However, when confluent cells were serum starved prior to treatment, no downregulation of p21(Cip1) or p27(Kip1) expression was observed. Notably, serum starvation did not significantly influence the capacity of the cells to progress to the S phase. It was observed that serum starvation reduced cell density. Further, when cells were plated at a range of different densities, starved of serum to render them quiescent and then subsequently treated with serum, a reduction in p21(Cip1) and p27(Kip1) expression was observed in cells plated at high density but not in those at low density. Again, the extent and timing of progression to S phase was not influenced by cell density. To establish the potential role of cell:cell contact in the observed density-dependent regulation of p21(Cip1) and p27(Kip1) expression, cells were plated onto micorarrays of adhesive islands that prevented individual cells from making any contact with other cells. Under these conditions serum growth factors induced p21(Cip1) and p27(Kip1) downregulation, and hence, there is no requirement for cell:cell contact. Together, these data indicate that there are conditions under which 3T3 cells can progress to the S phase without downregulation of p21(Cip1) and p27(Kip1). The significance of these observations and mechanisms by which density-dependent regulation of p21(Cip1) and p27(Kip1) expression may occur are discussed.  相似文献   

6.
7.
We have recently shown that curcumin induces apoptosis in prostate cancer cells through Bax translocation to mitochondria and caspase activation, and enhances the therapeutic potential of TRAIL. However, the molecular mechanisms by which it causes growth arrest are not well-understood. We studied the molecular mechanism of curcumin-induced cell cycle arrest in prostate cancer androgen-sensitive LNCaP and androgen-insensitive PC-3 cells. Treatment of both cell lines with curcumin resulted in cell cycle arrest at G1/S phase and that this cell cycle arrest is followed by the induction of apoptosis. Curcumin induced the expression of cyclin-dependent kinase (CDK) inhibitors p16/INK4a, p21/WAF1/CIP1 and p27/KIP1, and inhibited the expression of cyclin E and cyclin D1, and hyperphosphorylation of retinoblastoma (Rb) protein. Lactacystin, an inhibitor of 26 proteasome, blocks curcumin-induced down-regulation of cyclin D1 and cyclin E proteins, suggesting their regulation at level of posttranslation. The suppression of cyclin D1 and cyclin E by curcumin may inhibit CDK-mediated phosphorylation of pRb protein. The inhibition of p21/WAF1/CIP1 by siRNA blocks curcumin-induced apoptosis, thus establishing a link between cell cycle and apoptosis. These effects of curcumin result in the proliferation arrest and disruption of cell cycle control leading to apoptosis. Our study suggests that curcumin can be developed as a chemopreventive agent for human prostate cancer.  相似文献   

8.
The molecular mechanisms mediating death receptor-induced caspase-independent necrotic cell death are still largely unknown. We have previously reported that NIH3T3 cells are sensitized by caspase inhibition to death receptor-induced cytotoxicity leading to a necrosis-like cell death. In addition, we have identified an important role of cell cycle progression for this sensitization effect. Here, we report that tumor necrosis factor-induced necrotic death is preceded by an upregulation of the cyclin-dependent kinase inhibitor p21(WAF1/Cip1). Increased expression of p21(WAF1/Cip1) occurs prior to cell death in the nucleus, where it binds to a cyclin-dependent kinase indicating its functionality. The use of specific pharmacological inhibitors revealed a partial involvement of p38 mitogen-activated protein kinase in the upregulation of p21(WAF1/Cip1). Inhibition of p21(WAF1/Cip1) upregulation prevents a previously observed delay of the cells in the G2/M phase of the cell cycle thereby augmenting, not inhibiting cell death.  相似文献   

9.
The cyclin-dependent kinase inhibitor, p27(Kip1), which regulates cell cycle progression, is controlled by its subcellular localization and subsequent degradation. p27(Kip1) is phosphorylated on serine 10 (S10) and threonine 187 (T187). Although the role of T187 and its phosphorylation by Cdks is well-known, the kinase that phosphorylates S10 and its effect on cell proliferation has not been defined. Here, we identify the kinase responsible for S10 phosphorylation as human kinase interacting stathmin (hKIS) and show that it regulates cell cycle progression. hKIS is a nuclear protein that binds the C-terminal domain of p27(Kip1) and phosphorylates it on S10 in vitro and in vivo, promoting its nuclear export to the cytoplasm. hKIS is activated by mitogens during G(0)/G(1), and expression of hKIS overcomes growth arrest induced by p27(Kip1). Depletion of KIS using small interfering RNA (siRNA) inhibits S10 phosphorylation and enhances growth arrest. p27(-/-) cells treated with KIS siRNA grow and progress to S/G(2 )similar to control treated cells, implicating p27(Kip1) as the critical target for KIS. Through phosphorylation of p27(Kip1) on S10, hKIS regulates cell cycle progression in response to mitogens.  相似文献   

10.
11.
The cyclin-dependent kinase (Cdk) inhibitors p21(Cip1) and p27(Kip1) have been proposed to exert redundant functions in cell cycle progression and differentiation programs, although nonoverlapping functions have also been described. To gain further insights into the relevant mechanisms and to detect possible functional differences between both proteins, we conditionally expressed p21(Cip1) and p27(Kip1) in K562, a multipotent human leukemia cell line. Temporal ectopic expression of either p21(Cip1) or p27(Kip1) arrested proliferation, inhibited Cdk2 and Cdk4 activities, and suppressed retinoblastoma phosphorylation. However, whereas p21(Cip1) arrested cells in both G(1) and G(2) cell cycle phases, p27(Kip1) blocked the G(1)/S-phase transition. Furthermore, although both p21(Cip1) and p27(Kip1) associated with Cdk6, only p27(Kip1) significantly inhibited its activity. Most importantly, each protein promoted differentiation along a distinct pathway; p21(Cip1) triggered megakaryocytic maturation, whereas p27(Kip1) resulted in the expression of erythroid markers. Consistently, p21(Cip1) and p27(Kip1) were rapid and transiently up-regulated when K562 cells are differentiated into megakaryocytic and erythroid lineages, respectively. These findings demonstrate distinct functions of p21(Cip1) and p27(Kip1) in cell cycle regulation and differentiation and indicate that these two highly related proteins possess unique biological activities and are not functionally interchangeable.  相似文献   

12.
13.
We have studied the ability of F9 teratocarcinoma cells to arrest in G1/S and G2/M checkpoints following gamma-irradiation. Wild-type p53 protein is rapidly accumulated in F9 cells after gamma-irradiation, however this is not followed by G1/S arrest; there is just a reversible delay of the cell cycle in G2/M. In order to elucidate the reasons of the lack of G1/S arrest in F9 cells we investigated the levels of regulatory cell cycle proteins: G1-cyclins, cyclin dependent kinases and kinase inhibitor p21WAF1/CIP1. We have shown that in spite of p53-dependent activation of p21WAF1/CIP1 promoter, p21WAF1/CIP1 protein is not revealed by different polyclonal and monoclonal antibodies, either by immunoblotting or by immunofluorescent staining. However, when cells are treated with specific proteasome inhibitor lactacystin, p21WAF1/CIP1 protein is revealed. We therefore suggest that p21WAF1/CIP1 protein is subjected to proteasome degradation in F9 cells and probably the lack of G1/S arrest after gamma-irradiation is due to this degradation. Thus, it is the combination of functionally active p53 with low level expression of p21WAF1/CIP1 that causes a short delay of the cell cycle progression in G2/M, rather than the G1-arrest after gamma-irradiation of F9 cells.  相似文献   

14.
Skp2 regulates G2/M progression in a p53-dependent manner   总被引:1,自引:0,他引:1  
Targeted proteasomal degradation mediated by E3 ubiquitin ligases controls cell cycle progression, and alterations in their activities likely contribute to malignant cell proliferation. S phase kinase-associated protein 2 (Skp2) is the F-box component of an E3 ubiquitin ligase complex that targets p27Kip1 and cyclin E1 to the proteasome. In human melanoma, Skp2 is highly expressed, regulated by mutant B-RAF, and required for cell growth. We show that Skp2 depletion in melanoma cells resulted in a tetraploid cell cycle arrest. Surprisingly, co-knockdown of p27Kip1 or cyclin E1 failed to prevent the tetraploid arrest induced by Skp2 knockdown. Enhanced Aurora A phosphorylation and repression of G2/M regulators cyclin B1, cyclin-dependent kinase 1, and cyclin A indicated a G2/early M phase arrest in Skp2-depleted cells. Furthermore, expression of nuclear localized cyclin B1 prevented tetraploid accumulation after Skp2 knockdown. The p53 status is most frequently wild type in melanoma, and the tetraploid arrest and down-regulation of G2/M regulatory genes were strongly dependent on wild-type p53 expression. In mutant p53 melanoma lines, Skp2 depletion did not induce cell cycle arrest despite up-regulation of p27Kip1. These data indicate that elevated Skp2 expression may overcome p53-dependent cell cycle checkpoints in melanoma cells and highlight Skp2 actions that are independent of p27Kip1 degradation.  相似文献   

15.
Proliferation of some cultured human tumor cell lines bearing high numbers of epidermal growth factor (EGF) receptors is paradoxically inhibited by EGF in nanomolar concentrations. In the present study, we have investigated the biochemical mechanism of growth inhibition in A431 human squamous carcinoma cells exposed to exogenous EGF. In parallel, we studied a selected subpopulation, A431-F, which is resistant to EGF-mediated growth inhibition. We observed a marked reduction in cyclin-dependent kinase-2 (CDK2) activity when A431 and A431-F cells were cultured with 20 nM EGF for 4 h. After further continuous exposure of A431 cells to EGF, the CDK2 activity remained at a low level and was accompanied by persistent G1 arrest. In contrast, the early reduced CDK2 activity and G1 accumulation in A431-F cells was only transient. We found that, at early time points (4-8 h), EGF induces p21Cip1/WAF1 mRNA and protein expression in both EGF-sensitive A431 cells and EGF-resistant A431-F cells. But only in A431 cells, was p21Cip1/WAF1 expression sustained at a significantly increased level for up to 5 d after addition of EGF. Induction of p21Cip1/WAF1 by EGF could be inhibited by a specific EGF receptor tyrosine kinase inhibitor, tyrphostin AG1478, suggesting that p21Cip1/WAF1 induction was a consequence of receptor tyrosine kinase activation by EGF. We also demonstrated that the increased p21Cip1/WAF1 was associated with both CDK2 and proliferating cell nuclear antigen (PCNA). Taken together, our results demonstrate that p21Cip1/WAF1 is an important mediator of EGF-induced G1 arrest and growth inhibition in A431 cells.  相似文献   

16.
The Cip/Kip family of mammalian cyclin-dependent kinase (cdk) inhibitors plays important roles in development, particularly in cell fate determination and differentiation, in addition to their function of blocking cell cycle progression. We have identified two novel members of the Kip/Cip cdk inhibitor family, p16Xic2 and p17Xic3, from Xenopus laevis. Sequence analysis revealed that p16Xic2 and p17Xic3 are orthologues of mammalian p21Cip1 and p27Kip1, respectively. Overexpression of these inhibitors results in cell cycle arrest by inhibition of cdk2 activity. Interestingly, the expression of these inhibitors is highly developmentally regulated. p16Xic2 is highly expressed in differentiating somite, tail bud, lens, and cement gland, while p17Xic3 is expressed in the central nervous system. In a retinal cell fate determination assay, both p16Xic2 and p17Xic3 have an activity that influences cell fate determination. These observations suggest that p16Xic2 and p17Xic3 might be involved in cell fate determination in a tissue-specific manner by coordinating proliferation and differentiation as observed with p27Xic1.  相似文献   

17.
Induction of G(1) arrest by TGF-beta correlates with the regulation of p21(Cip1) and p27(Kip1), members of the Cip/Kip family of cyclin-dependent kinase inhibitors (cki). However, no definitive evidence exists that these proteins play a causal role in TGF-beta(1)-induced growth arrest in lymphocytes. In this report we show the suppression of cell cycle progression by TGF-beta is diminished in T cells from mice deficient for both p21(Cip1) and p27(Kip1) (double-knockout (DKO)) only when activated under conditions of optimal costimulation. Although there is an IL-2-dependent enhanced proliferation of CD8(+) T cells from DKO mice, TGF-beta is able to maximally suppress the proliferation of DKO T cells when activated under conditions of low costimulatory strength. We also show that the induction of p15(Ink4b) in T cells stimulated in the presence of TGF-beta is not essential, as TGF-beta also efficiently suppressed proliferation of T cells from p15(Ink4b-/-) mice. Finally, although these cki are dispensable for the suppression of T cell proliferation by TGF-beta, we now describe a Smad3-dependent down-regulation of cdk4, suggesting a potential mechanism underlying to resistance of Smad3(-/-) T cells to the induction of growth arrest by TGF-beta. In summary, the growth suppressive effects of TGF-beta in naive T cells are a function of the strength of costimulation, and alterations in the expression of cki modify the sensitivity to TGF-beta by lowering thresholds for a maximal mitogenic response.  相似文献   

18.
Th1 cells exposed to Ag and the G(1) blocker n-butyrate in primary cultures lose their ability to proliferate in Ag-stimulated secondary cultures. The ability of n-butyrate to induce anergy in Ag-stimulated, but not resting, Th1 cells was shown here to be blocked by cycloheximide. Subsequent experiments to delineate the nature of the protein apparently required for n-butyrate-induced Th1 cell anergy focused on the role of cyclin-dependent kinase (cdk) inhibitors p21(Cip1) and p27(Kip1). Normally, entry into S phase by Th1 cells occurs around 24 h after Ag stimulation and corresponds with relatively low levels of both p21(Cip1) and p27(Kip1). However, unlike control Th1 cells, anergic Th1 cells contained high levels of both p21(Cip1) and p27(Kip1) when examined 24 h after Ag stimulation. The increase in p21(Cip1) observed in Ag-stimulated anergic Th1 cells appeared to be initiated in primary cultures. In contrast, the increase in p27(Kip1) observed in these anergic Th1 cells appears to represent a re-expression of the protein much earlier than control cells following Ag stimulation in secondary cultures. The anergic Th1 cells contained functionally active cdk inhibitors capable of inhibiting the activity of both endogenous and exogenous cdks. Consequently, it appears that n-butyrate-induced anergy in Th1 cells correlated with the up-regulation of p21(Cip1) and perhaps the downstream failure to maintain low levels of p27(Kip1). Increased levels of both p21(Cip1) and p27(Kip1) at the end of G(1) could prevent cdk-mediated entry into S phase, and thus help maintain the proliferative unresponsiveness found in the anergic Th1 cells.  相似文献   

19.
20.
Overexpression of the cyclin-dependent kinase inhibitor p27(Kip1) has been demonstrated to induce cell cycle arrest and apoptosis in various cancer cell lines, but has also been associated with the opposite effect of enhanced survival of tumor cells and increased resistance towards chemotherapeutic treatment. To address the question of how p27(Kip1) expression is related to apoptosis induction, we studied doxycycline-regulated p27(Kip1) expression in K562 erythroleukemia cells. p27(Kip1) expression effectively retards proliferation, but it is not sufficient to induce apoptosis in K562 cells. p27(Kip1)-expressing K562 cells, however, become resistant to apoptosis induction by the proteasome inhibitors PSI, MG132 and epoxomicin, in contrast to wild-type K562 cells that are efficiently killed. Cell cycle arrest in the S phase by aphidicolin, which is not associated with an accumulation of p27(Kip1) protein, did not protect K562 cells against the cytotoxic effect of the proteasome inhibitor PSI. The expression levels of p27(Kip1) thus constitute an important parameter, which decides on the overall sensitivity of cells against the cytotoxic effect of proteasome inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号