首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Renal tubular transport and its regulation are reviewed for Na(+) (and Cl(-)), and for fluid and organic anions (including urate). Filtered Na(+) (and Cl(-)) is reabsorbed along the tubules but only in mammals and birds does most reabsorption occur in the proximal tubules. Reabsorption involves active transport of Na(+) and passive reabsorption of Cl(-). The active Na(+) step always involves Na-K-ATPase at the basolateral membrane, but the entry step at luminal membrane varies among tubule segments and among vertebrate classes (except for Na(+)-2Cl(-)-K(+) cotransporter in diluting segment). Regulation can involve intrinsic, neural and endocrine factors. Proximal tubule fluid reabsorption is dependent on Na(+) reabsorption in all vertebrates studied, except ophidian reptiles. Fluid secretion occurs in glomerular and aglomerular fishes, reptiles and even mammals, but its significance is not always clear. A non-specific transport system for net secretion of organic anions (OAs) exists in the proximal renal tubules of almost all vertebrates. Net transepithelial secretion involves: (1) transport into the cells at the basolateral side against an electrochemical gradient by a tertiary active transport process, in which the final step involves OA/alpha-ketoglutarate exchange and (2) movement out of the cells across the luminal membrane down an electrochemical gradient by unknown carrier-mediated process(es). Regulation may involve protein kinase C and mitogen-activated protein kinase. Urate is net secreted in the proximal tubules of birds and reptiles. This process is urate-specific in reptiles but in birds, it may involve both a urate-specific system and the general OA system.  相似文献   

2.
Basolateral transport of the prototypical type I organic cation tetraethylammonium (TEA) by the Malpighian tubules of Drosophila melanogaster was studied using measurements of basolateral membrane potential (V(bl)) and uptake of [(14)C]-labeled TEA. TEA uptake was metabolically dependent and saturable (maximal rate of mediated TEA uptake by all potential transport processes, reflecting the total transport capacity of the membrane, 0.87 pmol.tubule(-1).min(-1); concentration of TEA at 0.5 of the maximal rate of TEA uptake value, 24 muM). TEA uptake in Malpighian tubules was inhibited by a number of type I (e.g., cimetidine, quinine, and TEA) and type II (e.g., verapamil) organic cations and was dependent on V(bl). TEA uptake was reduced in response to conditions that depolarized V(bl) (high-K(+) saline, Na(+)-free saline, NaCN) and increased in conditions that hyperpolarized V(bl) (low-K(+) saline). Addition of TEA to the saline bathing Malpighian tubules rapidly depolarized the V(bl), indicating that TEA uptake was electrogenic. Blockade of K(+) channels with Ba(2+) did not block effects of TEA on V(bl) or TEA uptake indicating that TEA uptake does not occur through K(+) channels. This is the first study to provide physiological evidence for an electrogenic carrier-mediated basolateral organic cation transport mechanism in insect Malpighian tubules. Our results also suggest that the mechanism of basolateral TEA uptake by Malpighian tubules is distinct from that found in vertebrate renal tubules.  相似文献   

3.
Iono- and osmoregulation by the blood-feeding hemipteran Rhodnius prolixus involves co-ordinated actions of the upper and lower Malpighian tubules. The upper tubule secretes ions (Na(+), K(+), Cl(-)) and water, whereas the lower tubule reabsorbs K(+) and Cl(-) but not water. The extent of KCl reabsorption by the lower tubule in vitro was monitored by ion-selective microelectrode measurement of Cl(-) and/or K(+) concentration in droplets of fluid secreted by Malpighian tubules isolated under oil. An earlier study proposed that K(+) reabsorption involves an omeprazole-sensitive apical K(+)/H(+) ATPase and Ba(2+)-sensitive basolateral K(+) channels. This paper examines the effects acetazolamide and of compounds that inhibit chloride channels, Cl(-)/HCO(3)(-) exchangers and Na(+)/K(+)/2Cl(-) or K(+)/Cl(-) co-transporters. The results suggest that Cl(-) reabsorption is inhibited by acetazolamide and by Cl(-) channel blockers, including diphenylamine-2-carboxylate(DPC) and 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB), but not by compounds that block Na(+)/K(+)/Cl(-) and K(+)/Cl(-) co-transporters. Measurements of transepithelial potential and basolateral membrane potential during changes in bathing saline chloride concentration indicate the presence of DPC- and NPPB-sensitive chloride channels in the basolateral membrane. A working hypothesis of ion movements during KCl reabsorption proposes that Cl(-) moves from lumen to cell through a stilbene-insensitive Cl(-)/HCO(3)(-) exchanger and then exits the cell through basolateral Cl(-) channels.  相似文献   

4.
The effects of changes in the salinity of the rearing medium on Malpighian tubule fluid secretion and ion transport were examined in larvae of the freshwater mosquito Aedes aegypti and the saltwater species Ochlerotatus taeniorhynchus. For unstimulated tubules of both species, the K(+) concentration of secreted fluid was significantly lower when larvae were reared in 30% or 100% seawater (O. taeniorhynchus only), relative to tubules from freshwater-reared larvae. The Na(+) concentration of secreted fluid from unstimulated tubules of O. taeniorhynchus reared in 30% or 100% seawater was higher relative to tubules from freshwater-reared larvae. The results suggest that changes in salinity of the larval rearing medium lead to sustained changes in ion transport mechanisms in unstimulated tubules. Furthermore, alterations of K(+) transport may be utilized to either conserve Na(+) under freshwater (Na(+)-deprived) conditions or eliminate more Na(+) in saline (Na(+)-rich) conditions. The secretagogues cyclic AMP [cAMP], cyclic GMP [cGMP], leucokinin-VIII, and thapsigargin stimulated fluid secretion by tubules of both species. Cyclic AMP increased K(+) concentration and decreased Na(+) concentration in the fluid secreted by tubules isolated from O. taeniorhynchus larvae reared in 100% seawater. Interactions between rearing salinity and cGMP actions were similar to those for cAMP. Leucokinin-VIII and thapsigargin had no effect on secreted fluid Na(+) or K(+) concentrations. Results indicate that changes in rearing medium salinity affect the nature and extent of stimulation of fluid and ion secretion by secretagogues.  相似文献   

5.
Substitution of Rb(+) for K(+) in the incubation saline for in vitro preparations of Malpighian tubules had little effect on tubule function. Secretion rates increased by 10% for whole tubules, 9% for distal segments and 10% for main segments. In the secreted fluids Rb(+) almost completely replaced K(+). Within the cells of the main segment of the tubules Rb replaced the majority of the intracellular K. Treatment by ouabain in Rb saline resulted in a considerable increase in intracellular Na and Cl concentrations but no change in Rb concentration. This suggests that Rb(+) did not enter the cell via Na K ATPase and that the latter was not directly involved in Rb(+) secretion and by inference K(+) secretion. Substitution of Br(-) for Cl(-) in the incubation saline resulted in a 30% reduction in secretion rate from the distal segments but only a 10% reduction for the main segment. Cl(-) was almost completely replaced by Br(-) in fluid from both main and distal segments. In cells of the main segment the intracellular concentration of Br(-) did not exceed 30mmol kg(-1) dry weight and the Cl(-) concentration was unchanged in the apical region of the cell and increased in the basal region. These data suggest that Br(-) was transported across the tubule epithelium by a paracellular route and that the basal cell membrane is relatively impermeable to Cl(-). By inference Cl(-) may also be transported by a paracellular route.  相似文献   

6.
Previous studies of the Malpighian tubules of Rhodnius reported lumen-negative values of transepithelial potential (TEP), and a characteristic triphasic change in TEP in response to stimulation of tubule fluid secretion by serotonin. TEP was measured using the Ramsay technique, in which electrodes are positioned in bathing and secreted fluid droplets for tubules isolated under paraffin oil. The validity of this method of TEP measurement has been questioned on the grounds that, in tubules of some species, it may permit shunting of current from lumen to bath through the cells or through the thin layer of fluid adherent to the surface of that portion of the tubule in the oil. The triphasic response of TEP to serotonin has been confirmed in this study of tubules of fifth instar Rhodnius prolixus using two different techniques that eliminate the possibility of shunting artefacts. From an initially negative value in unstimulated tubules ( approximately -25 mV, lumen-negative), TEP shifted to approximately -33 mV in phase 1, approximately +30 mV in phase 2 and approximately -32 mV in phase 3. TEP during each phase was similar irrespective of the measurement technique. Ion substitution experiments and the effects of specific pharmacological reagents support the proposal that the three phases of the response of TEP to serotonin correspond to sequential activation of an apical Cl(-) channel, an apical V-type H(+) ATPase and a basolateral Na(+):K(+):2Cl(-) cotransporter.  相似文献   

7.
The intracellular elemental concentrations of K, Na, Cl, P, Mg and Ca within Type I cells of the Malpighian tubules of Locusta migratoria have been measured using electron probe X-ray microanalysis. The distribution of Na, K and Cl was not homogeneous within the cells and concentration gradients exist from basal to apical surfaces. The rate of secretion and the cationic composition of the secreted tubule fluid have also been determined. Furosemide (1 mM) inhibited fluid secretion by about 60%, raised the [Na(+)] but did not significantly alter the [K(+)] of the secreted tubule fluid. When Rb(+) replaced K(+) in the saline fluid secretion was also inhibited by about 60%, but no additional inhibition occurred by the simultaneous inclusion of furosemide. Thus, Rb(+) and furosemide probably act at the same transport site, and Rb(+) cannot substitute for K(+) at the basal membrane cotransporter. Bafilomycin (1 μM) dramatically inhibited fluid production by 85%, the [K(+)] of the secreted fluid was reduced by about 30% but the [Na(+)] was almost doubled. Furosemide, in common with other inhibitors of fluid secretion acting at the basal surface (ouabain and Rb(+)), caused a fall in intracellular [K] and a rise in [Na]. Bafilomycin, in common with N-ethyl maleimide, which acts at the apical surface, increased the intracellular [K] but did not affect the [Na].  相似文献   

8.
The evolution of specialized excretory cells is a cornerstone of the metazoan radiation, and the basic tasks performed by Drosophila and human renal systems are similar. The development of the Drosophila renal (Malpighian) tubule is a classic example of branched tubular morphogenesis, allowing study of mesenchymal-to-epithelial transitions, stem cell-mediated regeneration, and the evolution of a glomerular kidney. Tubule function employs conserved transport proteins, such as the Na(+), K(+)-ATPase and V-ATPase, aquaporins, inward rectifier K(+) channels, and organic solute transporters, regulated by cAMP, cGMP, nitric oxide, and calcium. In addition to generation and selective reabsorption of primary urine, the tubule plays roles in metabolism and excretion of xenobiotics, and in innate immunity. The gene expression resource FlyAtlas.org shows that the tubule is an ideal tissue for the modeling of renal diseases, such as nephrolithiasis and Bartter syndrome, or for inborn errors of metabolism. Studies are assisted by uniquely powerful genetic and transgenic resources, the widespread availability of mutant stocks, and low-cost, rapid deployment of new transgenics to allow manipulation of renal function in an organotypic context.  相似文献   

9.
10.
Secretion of primary urine by upper Malpighian tubules of the blood-sucking insect Rhodnius prolixus has recently been shown to be inhibited by cyclic GMP (cGMP). In the present work, we have demonstrated that cGMP has effects antagonistic to those of cAMP in Rhodnius tubules and have further characterized the effects of cGMP on tubular secretion. Cyclic GMP inhibited secretion at all concentrations from 5x10(-6) to 10(-3)M, though this inhibition was partially or wholly reversed by large (2mM) doses of cAMP. While sub-maximal concentrations of cGMP did not significantly alter [K(+)] and [Na(+)] of secreted fluid, high external [cGMP] reduced secretion to minimal levels and caused [K(+)] and [Na(+)] to approach pre-stimulation levels. Cyclic GMP does not appear to affect the permeability of the lower Malpighian tubule to water. Both cAMP and cGMP likely enter tubule cells by way of an organic acid transporter whose activity is induced by feeding. Sensitivity of the tubules to exogenous cGMP and cAMP, which is assumed to be a function of transport activity, reaches a peak approximately 5 days after the blood meal and declines rapidly thereafter. Transport of anions into upper tubules involves at least two different transporters: one for acylamides (e.g., p-aminohippuric acid) and another for sulphonates (e.g., amaranth, phenol red). Amaranth and phenol red blocked the actions of both cGMP and cAMP, whereas p-aminohippuric acid was without effect. This suggests that cyclic nucleotides enter by way of the sulphonate transporter.  相似文献   

11.
Fluid secretion and intracellular pH were measured in isolated mosquito Malpighian tubules to determine the presence of Na(+)/H(+) exchange. Rates of fluid secretion by individual Malpighian tubules in vitro were inhibited by 78% of control in the presence of 100 microM 5-(N-ethyl-n-isopropyl)-amiloride (EIPA), a specific inhibitor of Na(+)/H(+) exchange. Steady-state intracellular pH was measured microfluorometrically by using 2', 7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein in individual Malpighian tubules. Bathing the Malpighian tubules in 0 mM extracellular Na(+) or in the presence of 100 microM EIPA reduced the steady-state intracellular pH by 0.5 pH units. Stimulation of the Na(+)/H(+) exchanger by using the NH(4)Cl pulse technique resulted in a rate of recovery from the NH(4)Cl-induced acute acid load of 8.7 +/- 1.0 x 10(-3) pH/s. The rates of recovery of intracellular pH after the acute acid load in the absence of extracellular Na(+) or in the presence of 100 microM EIPA were 0.7 +/- 0.6 and -0.3 +/- 0.3 x 10(-3) pH/s, respectively. These results indicate that mosquito Malpighian tubules possess a Na(+)/H(+) exchanger.  相似文献   

12.
The organic anion salicylate is a plant secondary metabolite that can protect plants against herbivores. Transport of salicylate across the basolateral membrane of the Malpighian tubules of Drosophila melanogaster was studied using a radioisotope tracer technique. The uptake of [(14)C]salicylate by the Malpighian tubules was active, saturable and Na(+)-dependent; the maximum uptake rate (J(max)) and the half saturation concentration (K(t)) were 12.6 pmoltubule(-1)min(-1) and 30.7micromoll(-1), respectively. In contrast to organic anion transport by vertebrate renal tissues, salicylate uptake was not trans-stimulated by glutarate (0.01-1.0 mmoll(-1)) or cis-inhibited by high concentrations (5 mmoll(-1)) of various alpha-keto acids (glutaric acid, alpha-ketoglutaric acid, succinic acid, and citric acid). Changes in basolateral membrane potential or physiologically relevant changes in bathing saline pH did not affect the rate of [(14)C]salicylate uptake. Ring-structure monocarboxylic acids (benzoic acid, nicotinic acid, gentisic acid, unlabelled salicylic acid, alpha-cyano-4-hydroxycinnamic acid, probenecid, fluorescein, and P-aminohippuric acid) strongly inhibited [(14)C]salicylate uptake rate. In contrast, short-chain monocarboxylic acids had little (butyric acid) or no effect (lactic acid, pyruvic acid, and propionic acid). Our results suggest that salicylate uptake across the basolateral membrane of D. melanogaster Malpighian tubules is mediated by a non-electrogenic, alpha-cyano-4-hydroxycinnamic acid-sensitive, Na(+):salicylate cotransport system.  相似文献   

13.
Transepithelial secretion in Malpighian tubules of the yellow fever mosquito (Aedes aegypti) is mediated by active transport of Na(+) and K(+) through principal cells and passive Cl(-) transport through the shunt. Permeation through the shunt was assessed by measuring transepithelial halide diffusion potentials in isolated perfused Malpighian tubules, after first inhibiting active transport with dinitrophenol. Diffusion potentials were small under control conditions, revealing Eisenman selectivity sequence I (I(-)>Br(-)>Cl(-)>F(-)) which is the halide mobility sequence in free solution. Accordingly, electrical field strengths of the shunt are small, selecting halides for passage on the basis of hydrated size. Leucokinin-VIII (LK-VIII) significantly increased the shunt conductance from 57.1 μS/cm to 250.0 μS/cm. In parallel, the shunt selectivity sequence shifted to Eisenman sequence III (Br(-)>Cl(-)>I(-)>F(-)), revealing increased electrical field strengths in the shunt, now capable of selecting small, dehydrated halides for passage. High concentrations of peritubular F(-) (142.5 mM) duplicated the effects of LK-VIII on shunt conductance and selectivity, suggesting a role for G-protein. In the presence of LK-VIII (or F(-)), coulombic interactions between the shunt and I(-) and F(-) may be strong enough to cause binding, thereby blocking the passage of Cl(-). Thus, LK-VIII increases both shunt conductance and selectivity, presumably via G-protein.  相似文献   

14.
15.
The Malpighian tubules of Tenebrio molitor provide a model system for interpreting the actions of endogenous diuretic and antidiuretic peptides. The effects of diuretic (Tenmo-DH(37)) and antidiuretic (Tenmo-ADFa) peptides and their respective second messengers (cyclic AMP and cyclic GMP) on basolateral (V(bl)) and transepithelial (V(te)) potentials of Tenebrio Malpighian tubules were determined using conventional microelectrodes. In the presence of 6 mmol l(-1) Ba(2+), Tenmo-DH(37) (100 nmol l(-1)) reversibly hyperpolarized V(bl) and depolarized V(te). A similar response was seen with the addition of 1 mmol l(-1) cyclic AMP; however, the apical membrane potential (V(ap)) then showed a hyperpolarization, whereas a depolarization of V(ap) was observed with Tenmo-DH(37). Bafilomycin A(1) (5 micromol l(-1)) inhibited fluid secretion of stimulated tubules and reversed the hyperpolarization of V(bl) in response to Tenmo-DH(37). In response to 100 nmol l(-1) Tenmo-ADFa or 1 mmol l(-1) cyclic GMP, V(bl) and V(te) depolarized, although cyclic GMP affected membrane potentials somewhat differently by causing an initial hyperpolarization of V(bl) and V(te). In high [K(+)]-low [Na(+)] Ringer, 1 mmol l(-1) amiloride decreased fluid secretion rates, and depolarized both V(bl) and V(te). Amiloride significantly decreased luminal pH in paired experiments, indicating the presence of a K(+)/nH(+) exchanger in tubule cells of Tenebrio. The results suggest that the endogenous factors and their second messengers stimulate/inhibit fluid secretion by acting on the apical V-ATPase, basolateral K(+) transport, and possibly Cl(-) transport.  相似文献   

16.
The intracellular elemental concentrations of Na, K, P, S, Cl and Mg in the type 1 cells of Malpighian tubules of Locusta migratoria L. have been measured using electron probe X-ray microanalysis. The effects of in vitro stimulation with 1 mM cAMP and corpora cardiaca extract (CC-extract) on the elemental concentrations have been quantified. The distribution of elements, particularly Na, K and Cl is not homogeneous in control cells, and concentration gradients exist within the cytoplasm. Dibutyryl-cAMP (DB-cAMP) caused a decrease in [K]i without disrupting the gradient which increased from the basal to the apical surface, the apical [Na]i was increased as was the [Cl]i. In contrast, in vitro application of CC-extract did not cause changes to the intracellular elemental composition as compared with control cells These data are consistent with the interpretation that exogenous cAMP only partially activated the full stimulatory response of Malpighian tubule cells observed with CC-extract. The changes observed in the density and elemental composition of the `dark bodies' in response to DB-cAMP and CC-extract stimulation suggest that these structures have a role in the ionic economy of Malpighian tubule cells. Accepted: 6 April 1999  相似文献   

17.
Both main and distal segments of the Malpighian tubules were sensitive to ouabain and furosemide but in different ways. Oubain had no effect on secretion rate by the main segment but in the secreted fluid Na(+) concentration increased substantially whereas K(+) decreased. Similarly intracellular elemental Na concentration increased and K decreased. Furosemide decreased the secretion rate of the main segment by 80%. The Na(+) concentration in the secreted fluid increased markedly but K(+) was not affected. Intracellular elemental Na concentration also increased but K was unchanged. In the distal segments both ouabain and furosemide decreased secretion rate by 40% but although ouabain had no effect on the composition of the secreted fluid, furosemide caused a substantial reduction in the concentrations of Mg(2+) and Cl(-) and a substantial increase in Na(+) and K(+) concentrations. The evidence suggests that the main segment contains a Na K ATPase and possibly a Na K 2Cl cotransporter whereas the distal segment may contain a Na K ATPase and a furosemide sensitive Mg(2+) transporter. K(+) entry into the cells of the main segment may be partially effected by a Na K 2Cl cotransporter but may be primarily via Na K ATPase in the distal segment.  相似文献   

18.
The effects of dietary exposure to organic anions on the physiology of isolated Malpighian tubules and on tubule gene expression were examined using larvae of Drosophila melanogaster. Acute (24 h) or chronic (7 d) exposure to type I organic anions (fluorescein or salicylate) was associated with increased fluid secretion rates and increased fluxes of both salicylate and the type II organic anion methotrexate. By contrast, chronic exposure to dietary methotrexate was associated with increased fluid secretion rate and increased flux of methotrexate, but not salicylate. Exposure to methotrexate in the diet resulted in increases in the expression of a multidrug efflux transporter gene (MET; CG30344) in the Malpighian tubules. There were also increases in expression of genes for either a Drosophila multidrug resistance–associated protein (dMRP; CG6214) or an organic anion transporting polypeptide (OATP; CG3380), depending on the concentration of methotrexate in the diet. Exposure to salicylate in the diet was associated with an increase in expression of dMRP and with decreases of MET and OATP. Exposure to dietary salicylate or methotrexate was also associated with different patterns of expression of heat shock protein genes. The results suggest that exposure to specific type I or type II organic anions has multiple effects and results not only in increased organic anion transport but also in increased rates of inorganic ion transport, which drives osmotically‐obliged fluid secretion. Increased fluid secretion may enhance secretion of organic anions by eliminating diffusive backflux from the tubule lumen to the hemolymph. © 2010 Wiley Periodicals, Inc.  相似文献   

19.
Insect Malpighian tubules actively transport a variety of xenobiotics, and it has been proposed that P-glycoprotein (P-gp), or the multidrug transporter, is involved. To test this idea, we observed the interaction of known P-gp substrates with isolated, living Malpighian tubules from tobacco hornworm (Manduca sexta) larvae. Specifically, the fluorescent drugs daunomycin, rhodamine 123, acridine orange and Hoechst 33342 were applied to the basal side of tubules (proximal portion) in a well of fluid on a coverslip; the subsequent distribution of the drugs was monitored by laser scanning confocal microscopy. Contrary to expectation, none of the drugs appeared in the lumen even after 1-2 h of incubation, although the cells of the tubule were intensely stained within 1 min. For daunomycin, neither verapamil, a P-gp inhibitor, nor nicotine, an alkaloid which appears to be transported by a P-gp-like mechanism in this species, had any effect on the pattern of staining. In sharp contrast to the fast and intense staining of Malpighian tubules, portions of muscle, nerve cord and body fat showed only light staining with daunomycin, and only after prolonged periods. The results suggest that for some drugs, Malpighian tubules act as xenobiotic scavengers, and that this property is unrelated to P-gp-mediated transport.  相似文献   

20.
The role of Na(+) and Cl(-) in fluid reabsorption by the efferent ducts was examined by perfusing individual ducts in vivo with preparations of 160 mM NaCl in which the ions were replaced, together or individually, with organic solutes while maintaining the osmolality at 300 mmol/kg. Progressively replacing NaCl with mannitol reduced net reabsorption of water and the ions in a concentration-dependent manner, and caused net movement into the lumen at concentrations of NaCl less than 80 mM. The net rates of flux were lower for Na(+) than for Cl(-). In collectates, [Na(+)] was greater than [Cl(-)], indicating that Cl(-) transport is probably linked with another anion. Replacing either Na(+) or Cl(-) in perfusates (with choline and isethionate, respectively) while maintaining the other inorganic ion at 160 mM also reduced net rates of reabsorption in a concentration-dependent manner to zero when either ion was completely replaced. There were no significant differences in the osmolality of perfusate and collectate, and collectates contained a mean of 3.4 mM K(+), indicating a backflux of K(+) into the lumen. It is concluded that fluid reabsorption from the efferent ducts is dependent on the transport of both Na(+) and Cl(-) from the lumen (from a luminal concentration of at least 70-80 mM), and that Cl(-) transport is dependent on another anion. The epithelium is permeable to K(+) and has a higher permeability to a range of organic solutes (mannitol, choline, and isethionate) than epithelium in the proximal kidney tubules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号