首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
J E Rothman  L Orci 《FASEB journal》1990,4(5):1460-1468
A combination of cell-free biochemical and morphological studies has revealed that a coated bud-coated vesicle transport system shuttles newly synthesized proteins through the successive processing compartments of the Golgi apparatus. These Golgi-coated vesicles operate in a manner formally analogous to the clathrin-coated, pit-coated vesicle system responsible for receptor-mediated endocytosis; however Golgi-coated vesicles do not contain clathrin.  相似文献   

2.
We describe a scheme for the purification of the nonclathrin-coated vesicles that mediate transport of proteins between Golgi cisternae and probably from ER to Golgi. These "Golgi-derived coated vesicles" accumulate when Golgi membranes are incubated with ATP and cytosol in the presence of GTP gamma S, a compound that blocks vesicle fusion. The coated vesicles dissociate from the Golgi cisternae in high salt and can then be purified by employing differential and density gradient centrifugation. Golgi-derived coated vesicles have a putative polypeptide composition that is distinct from both cytosol and Golgi membranes, as well as from that of clathrin-coated vesicles.  相似文献   

3.
The Golgi apparatus is a highly dynamic organelle whose organization is maintained by a proteinaceous matrix, cytoskeletal components, and inositol phospholipids. In mammalian cells, disassembly of the organelle occurs reversibly at the onset of mitosis and irreversibly during apoptosis. Several pharmacological agents including nocodazole, brefeldin A (BFA), and primary alcohols (1-butanol) induce reversible fragmentation of the Golgi apparatus. To dissect the mechanism of Golgi reassembly, rat NRK and GH3 cells were treated with 1-butanol, BFA, or nocodazole. During washout of 1-butanol, clathrin, a ubiquitous coat protein implicated in vesicle traffic at the trans-Golgi network and plasma membrane, and abundant clathrin coated vesicles were recruited to the region of nascent Golgi cisternae. Knockdown of endogenous clathrin heavy chain showed that the Golgi apparatus failed to reform efficiently after BFA or 1-butanol removal. Instead, upon 1-butanol washout, it maintained a compact, tight morphology. Our results suggest that clathrin is required to reassemble fragmented Golgi elements. In addition, we show that after butanol treatment the Golgi apparatus reforms via an initial compact intermediate structure that is subsequently remodeled into the characteristic interphase lace-like morphology and that reassembly requires clathrin.  相似文献   

4.
We take advantage of a cell-free system that reconstitutes essentially a single round of transport of the VSV-encoded G protein between Golgi cisternae to identify discrete stages in the maturation of carrier vesicles. Using GTP gamma S and N-ethylmaleimide (NEM) as selective inhibitors to accumulate coated and uncoated vesicles, respectively, we find these to be successive and obligatory transport intermediates. We find that the coated and uncoated vesicles that accumulate when transport is blocked have already transferred from donor to acceptor stacks but not yet fused. Similar coated and uncoated vesicles accumulate in appropriately treated whole cells. Our studies imply that a coated bud (pit)-coated vesicle-uncoated vesicle system analogous to that responsible for receptor-mediated endocytosis carries biosynthetic protein transport across the Golgi stack. However, "Golgi"-coated buds do not contain clathrin and seem to act as bulk carriers, whereas endocytic clathrin-coated pits carry a highly selective cargo.  相似文献   

5.
We have used an in vitro assay that reconstitutes transport from the ER to the Golgi complex in yeast to identify a functional vesicular intermediate in transit to the Golgi apparatus. Permeabilized yeast cells, which serve as the donor in this assay, release a homogeneous population of vesicles that are biochemically distinct from the donor ER fraction. The isolated vesicles, containing a post-ER/pre-Golgi form of the marker protein pro-alpha-factor, were able to bind to and fuse with exogenously added Golgi membranes. The ability to isolate fusion competent vesicles provides direct evidence that ER to Golgi membrane transport is mediated by a discrete population of vesicular carriers.  相似文献   

6.
A human genetic disorder, Tangier disease, has been linked recently to mutations in ATP-binding cassette protein A1 (ABCA1). In addition to its function in apoprotein A-I-mediated lipid removal, ABCA1 was also shown to be a phosphatidylserine (PS) translocase that facilitates PS exofacial flipping. This PS translocation is crucial for the plasma membrane to produce protrusions enabling the engulfment of apoptotic cells. In this report, we show that ABCA1 also plays a role in endocytosis. Receptor-mediated endocytosis, probed by both transferrin and low density lipoprotein, is up-regulated by more than 50% in homozygous Tangier fibroblasts in comparison with controls. Fluid-phase uptake is increased similarly. We also demonstrate that bulk membrane flow, including lipid endocytosis and exocytosis, is accelerated greatly in Tangier cells. Moreover, endocytosis is similarly enhanced in normal fibroblasts when ABCA1 function is inhibited by glyburide, whereas glyburide has no effect on endocytosis in Tangier cells. In addition, we demonstrate a decreased annexin V binding in Tangier fibroblasts as compared with controls, supporting the notion that PS transmembrane distribution is indeed defective in the presence of ABCA1 mutations. Furthermore, adding a PS analog to the exofacial leaflet of the plasma membrane normalizes endocytosis in Tangier cells. Taken together, these data demonstrate that ABCA1 plays an important role in endocytosis. We speculate that this is related to the PS translocase function of ABCA1. A loss of functional ABCA1, as in the case of Tangier cells, enhances membrane inward bending and facilitates endocytosis.  相似文献   

7.
We have used an in vitro Golgi protein transport assay dependent on high molecular weight (greater than 100 kD) cytosolic and/or peripheral membrane proteins to study the requirements for transport from the cis- to the medial-compartment. Fractionation of this system indicates that, besides the NEM-sensitive fusion protein (NSF) and the soluble NSF attachment protein (SNAP), at least three high molecular weight protein fractions from bovine liver cytosol are required. The activity from one of these fractions was purified using an assay that included the second and third fractions in a crude state. The result is a protein of 115-kD subunit molecular mass, which we term p115. Immunodepletion of the 115-kD protein from a purified preparation with mAbs removes activity. Peptide sequence analysis of tryptic peptides indicates that p115 is a "novel" protein that has not been described previously. Gel filtration and sedimentation analysis indicate that, in its native state, p115 is a nonglobular homo-oligomer. p115 is present on purified Golgi membranes and can be extracted with high salt concentration or alkaline pH, indicating that it is peripherally associated with the membrane. Indirect immunofluorescence indicates that p115 is associated with the Golgi apparatus in situ.  相似文献   

8.
9.
Epsin (epsin 1) is an interacting partner for the EH domain-containing region of Eps15 and has been implicated in conjunction with Eps15 in clathrin-mediated endocytosis. We report here the characterization of a similar protein (epsin 2), which we have cloned from human and rat brain libraries. Epsin 1 and 2 are most similar in their NH(2)-terminal region, which represents a module (epsin NH(2) terminal homology domain, ENTH domain) found in a variety of other proteins of the data base. The multiple DPW motifs, typical of the central region of epsin 1, are only partially conserved in epsin 2. Both proteins, however, interact through this central region with the clathrin adaptor AP-2. In addition, we show here that both epsin 1 and 2 interact with clathrin. The three NPF motifs of the COOH-terminal region of epsin 1 are conserved in the corresponding region of epsin 2, consistent with the binding of both proteins to Eps15. Epsin 2, like epsin 1, is enriched in brain, is present in a brain-derived clathrin-coated vesicle fraction, is concentrated in the peri-Golgi region and at the cell periphery of transfected cells, and partially colocalizes with clathrin. High overexpression of green fluorescent protein-epsin 2 mislocalizes components of the clathrin coat and inhibits clathrin-mediated endocytosis. The epsins define a new protein family implicated in membrane dynamics at the cell surface.  相似文献   

10.
J L Guan  J K Rose 《Cell》1984,37(3):779-787
We have carried out experiments designed to ask if it is possible to convert a secretory protein into an integral membrane protein by appending the membrane spanning domain of an integral membrane protein to its carboxy terminus. We first obtained expression of a cDNA clone encoding rat growth hormone (rGH) in eucaryotic cells, and found that this protein was secreted. We then constructed and expressed a hybrid gene encoding rGH fused to the membrane spanning and cytoplasmic domains of the vesicular stomatitis virus (VSV) glycoprotein (G). This fusion protein was anchored in microsomal membranes in the expected transmembrane configuration. The fusion protein was transported to the Golgi apparatus, and was esterified to palmitic acid, but it was not transported to the cell surface. We suggest that the sorting signal which allows rapid secretion of soluble rGH does not function when the protein is bound to the membrane.  相似文献   

11.
Newly synthesized G protein of vesicular stomatitis virus is not transported to the surface of cultured mammalian cells during mitosis (Warren et al., 1983, J. Cell Biol. 97:1623-1628). To determine where intracellular transport is inhibited, we have examined the post-translational modifications of G protein, which are indicators of specific compartments on the transport pathway. G protein in mitotic cells had only endo H-sensitive oligosaccharides containing seven or eight mannose residues, but no terminal glucose, and was not fatty acylated. These modifications were indicative of processing only by enzymes of the endoplasmic reticulum (ER). Quantitative immunocytochemistry was used as an independent method to confirm that transport of G protein out of the ER was inhibited. The density of G protein in the ER cisternae was 2.5 times greater than in infected G1 cells treated similarly. Incubation of infected mitotic cells with cycloheximide, which inhibits protein synthesis without affecting transport, did not result in a decrease in the density of G protein in the ER cisternae, demonstrating that G protein cannot be chased out of the ER. These results suggest that intracellular transport stops at or before the first vesicle-mediated step on the pathway.  相似文献   

12.
Mouse hepatitis coronavirus (MHV) buds into pleomorphic membrane structures with features expected of the intermediate compartment between the ER and the Golgi complex. Here, we characterize the MHV budding compartment in more detail in mouse L cells using streptolysin O (SLO) permeabilization which allowed us to better visualize the membrane structures at the ER-Golgi boundary. The MHV budding compartment shares membrane continuities with the rough ER as well as with cisternal elements on one side of the Golgi stack. It also labeled with p58 and rab2, two markers of the intermediate compartment, and with PDI, usually considered to be a marker of the rough ER. The membranes of the budding compartment, as well as the budding virions themselves, but not the rough ER, labeled with the N-acetyl- galactosamine (GalNAc)-specific lectin Helix pomatia. When the SLO- permeabilized cells were treated with guanosine 5'-(3-O- thio)triphosphate (GTP gamma S), the budding compartment accumulated a large number of beta-cop-containing buds and vesicular profiles. Complementary biochemical experiments were carried out to determine whether vesicular transport was required for the newly synthesized M protein, that contains only O-linked oligosaccharides, to acquire first, GalNAc and second, the Golgi modifications galactose and sialic acid. The results from both in vivo studies and from the use of SLO- permeabilized cells showed that, while GalNAc addition occurred under conditions which block vesicular transport, both cytosol and ATP were prerequisites for the M protein oligosaccharides to acquire Golgi modifications. Collectively, our data argue that transport from the rough ER to the Golgi complex requires only one vesicular transport step and that the intermediate compartment is a specialized domain of the endoplasmatic reticulum that extends to the first cisterna on the cis side of the Golgi stack.  相似文献   

13.
We have identified a 25-kD cytosolic yeast protein that mediates a late, prefusion step in transport of proteins between compartments of the Golgi apparatus. Activity was followed using the previously described cell free assay for protein transport between Golgi compartments as modified to detect late acting cytosolic factors (Wattenberg, B. W., and J. E. Rothman. 1986. J. Biol. Chem. 263:2208-2213). In the reaction mediated by this protein, transport vesicles that have become attached to the target membrane during a preincubation are processed in preparation for fusion. The ultimate fusion event does not require the addition of cytosolic proteins (Balch, W. E., W. G. Dunphy, W. A. Braell, and J. E. Rothman. 1984. Cell. 39:525-536). Although isolated from yeast, this protein has activity when assayed with mammalian membranes. This protein has been enriched over 150-fold from yeast cytosol, albeit not to complete homogeneity. The identity of a 25-kD polypeptide as the active component was confirmed by raising monoclonal antibodies to it. These antibodies were found to specifically inhibit transport activity. Because this is a protein operating in prefusion, it has been abbreviated POP.  相似文献   

14.
We have isolated a membrane fraction enriched in a class of transport carriers that form at the trans Golgi network (TGN) and are destined for the cell surface in HeLa cells. Protein kinase D (PKD) is required for the biogenesis of these carriers that contain myosin II, Rab6a, Rab8a, and synaptotagmin II, as well as a number of secretory and plasma membrane‐specific cargoes. Our findings reveal a requirement for myosin II in the migration of these transport carriers but not in their biogenesis per se. Based on the cargo secreted by these carriers we have named them CARTS for CAR riers of the T GN to the cell S urface. Surprisingly, CARTS are distinct from the carriers that transport vesicular stomatitis virus (VSV)‐G protein and collagen I from the TGN to the cell surface. Altogether, the identification of CARTS provides a valuable means to understand TGN to cell surface traffic.  相似文献   

15.
M Seeger  G S Payne 《The EMBO journal》1992,11(8):2811-2818
We have investigated the role of clathrin in vacuolar protein sorting using yeast strains harboring a temperature-sensitive allele of clathrin heavy chain (chc1-ts). After a 5 min incubation at the non-permissive temperature (37 degrees C), the chc1-ts strains displayed a severe defect in the sorting of lumenal vacuolar proteins. Sorting of a vacuolar membrane protein, alkaline phosphatase, and transport to the surface of a cell wall protein, was not affected at 37 degrees C. In chc1-ts cells incubated at 37 degrees C, secretion of the missorted lumenal vacuolar protein carboxypeptidase Y (CPY) was blocked by the sec1 mutation which prevents fusion of secretory vesicles to the plasma membrane. Unexpectedly, chc1-ts cells incubated for extended periods at 37 degrees C regained the ability to sort CPY. Cells carrying deletions of the CHC1 gene (chc1 delta) also sorted CPY to the vacuole even when subjected to temperature shifts. Vacuolar delivery of CPY in chc1 delta cells was not blocked by sec1 suggesting that transport does not occur by secretion and endocytosis. These results provide in vivo evidence that clathrin plays a role in the Golgi complex in sorting of vacuolar proteins from the secretory pathway. With time, however, yeast cells lacking functional clathrin heavy chains are able to adapt in a way that allows restoration of vacuolar protein sorting in the Golgi complex. These conclusions clarify previous studies of chc1 delta cells which raised the possibility that clathrin is not involved in vacuolar protein sorting.  相似文献   

16.
Although a critical role of microsomal transfer protein (MTP) has been recognized in the assembly of nascent apolipoprotein B (apoB)-containing lipoproteins, it remains unclear where and how MTP transfers lipids in the secretory pathway during the maturational process of apoB lipidation. The aims of this study were to determine whether MTP functions in the secretory pathway as well as in the endoplasmic reticulum and whether its large 97-kDa subunit interacts with the small 58-kDa protein disulfide isomerase (PDI) subunit and apoB, particularly in the Golgi apparatus. Using a high resolution immunogold approach combined with specific polyclonal antibodies, the large and small subunits of MTP were observed over the rough endoplasmic reticulum and the Golgi. Double immunocytochemical detection unraveled the colocalization of MTP and PDI as well as MTP and apoB in these same subcellular compartments. To confirm the spatial contact of these proteins, Golgi fractions were isolated, homogenized, and incubated with an anti-MTP large subunit antibody. Immunoprecipitates were applied on SDS-PAGE and then transferred on to nitrocellulose. Immunoblotting the membrane with PDI and apoB antibodies confirmed the colocalization of these proteins with MTP. Furthermore, MTP activity assay disclosed a substantial triglyceride transfer in the Golgi fractions. The occurrence of membrane-associated apoB in the Golgi, coupled with its interaction with active MTP, suggests an important role for the Golgi in the biogenesis of apoB-containing lipoproteins.  相似文献   

17.
We recently described the identification of BOS1 (Newman, A., J. Shim, and S. Ferro-Novick. 1990. Mol. Cell. Biol. 10:3405-3414.). BOS1 is a gene that in multiple copy suppresses the growth and secretion defect of bet1 and sec22, two mutants that disrupt transport from the ER to the Golgi complex in yeast. The ability of BOS1 to specifically suppress mutants blocked at a particular stage of the secretory pathway suggested that this gene encodes a protein that functions in this process. The experiments presented in this study support this hypothesis. Specifically, the BOS1 gene was found to be essential for cellular growth. Furthermore, cells depleted of the Bos1 protein fail to transport pro-alpha-factor and carboxypeptidase Y (CPY) to the Golgi apparatus. This defect in export leads to the accumulation of an extensive network of ER and small vesicles. DNA sequence analysis predicts that Bos1 is a 27-kD protein containing a putative membrane-spanning domain. This prediction is supported by differential centrifugation experiments. Thus, Bos1 appears to be a membrane protein that functions in conjunction with Bet1 and Sec22 to facilitate the transport of proteins at a step subsequent to translocation into the ER but before entry into the Golgi apparatus.  相似文献   

18.
We have identified a vesicle fraction that contains alpha 1-antitrypsin and other human HepG2 hepatoma secretory proteins en route from the rough endoplasmic reticulum (RER) to the cis face of the Golgi complex. [35S]Methionine pulse-labeled cells were chased for various periods of time, and then a postnuclear supernatant fraction was resolved on a shallow sucrose-D2O gradient. This intermediate fraction has a density lighter than RER or Golgi vesicles. Most alpha 1-antitrypsin in this fraction (P1) bears N-linked oligosaccharides of composition similar to that of alpha 1-antitrypsin within the RER; mainly Man8GlcNac2 with lesser amounts of Man7GlcNac2 and Man9GlcNac2; this suggests that the protein has not yet reacted with alpha-mannosidase-I on the cis face of the Golgi complex. This light vesicle species is the first post-ER fraction to be filled by labeled alpha 1-antitrypsin after a short chase, and newly made secretory proteins enter this compartment in proportion to their rate of exit from the RER and their rate of secretion from the cells: alpha 1-antitrypsin and albumin faster than preC3 and alpha 1-antichymotrypsin, faster, in turn, then transferrin. Deoxynojirimycin, a drug that blocks removal of glucose residues from alpha 1-antitrypsin in the RER and blocks its intracellular maturation, also blocks its appearance in this intermediate compartment. Upon further chase of the cells, we detect sequential maturation of alpha 1- antitrypsin to two other intracellular forms: first, P2, a form that has the same gel mobility as P1 but that bears an endoglycosidase H- resistant oligosaccharide and is found in a compartment--probably the medial Golgi complex--of density higher than that of the intermediate that contains P1; and second, the mature sialylated form of alpha 1- antitrypsin.  相似文献   

19.
20.
A new type porous carrier was fabricated from a mixture of sodium alginate, bovine serum albumin and sodium bicarbonate. The porous space of the carrier is an assembly of void spaces. The carrier was successfully applied to the cultivation of suspension animal cells. In the culture, while both cells and carriers were held in suspension, the cells were entrapped hydrodynamically into the void spaces in the carriers. A culture of hybridoma cells using this carrier resulted in a cell density up to 5.7×107 cells per ml-carrier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号