首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Lord  Medway 《Ibis》1973,115(1):60-86
The Barn Swallow is a non-breeding winter visitor to West Malaysia (Malaya), abundant in season, by day feeding aerially over a wide range of habitats and by night normally roosting gregariously in trees, reed-beds or on service wires in towns. Records of ringed birds have demonstrated that those reaching Malaya breed in the Palaearctic region from 108°E eastwards between 37° and 51°N. Recoveries south of the breeding range suggested that migrating birds may follow either a continental route or a more easterly track through the Philippines and Borneo. Counts at roost sites in a reed-bed and in towns demonstrated a seasonal increase in numbers from late July to a peak in November, followed by a decline of about 20% to a level maintained until mid-February when departure commenced. Most birds had left by early May, but a few lingered and possibly overlapped with the first returning migrants in June. There was no evidence that any individuals remained in Malaya through the nuptial period. Repeats during winter at three regularly sampled urban roosts indicated that many birds on passage were present until November and again in late March–early April; from December to February the winter population was relatively stable and comparatively sedentary. Although the distances between towns were small in relation to the demonstrated foraging range of Barn Swallows, only 17% of 1,955 repeats of ringed birds represented a shift in roost site. Most shifts were towards the centrally situated and most populous roost of the three; interchanges between the outer pair of towns were few. A complete moult occurred on the wintering grounds, during which young of the year acquired adult plumage. Replacement of the primaries extended virtually throughout the moulting period, at an average rate of 2.4 feathers per month in the proximal part of the tract and 1.3 feathers per month in the distal part. Adults on average moulted slightly earlier than juveniles, but there was a wide scatter in timing between individuals of both age groups. There was no evidence that the initiation of moult was related to the dates of post-nuptial migration. The date of departure on prenuptial migration, however, was normally delayed until primary moult was complete. Large weight gains in March and April occurred only in swallows which had completed the moult. At this period the mean weight of birds in fresh plumage was about 30% above the lowest winter mean, and was significantly higher than that of contemporary samples of birds in which moult was continuing. In final samples in late April and early May mean weights showed a decline, indicating that late birds departed with reduced deposits of metabolic reserves. The gonads of adults of both sexes among passage and arriving birds in July and August had largely completed post-nuptial regeneration, and subsequently remained quiescent. Preliminary stages of recrudescence were observed in females from February onwards, and in males from March. Recrudescence was most advance in specimens which had completed the moult, but did not approach breeding condition in any bird before departure. Returning birds tended to be conservative in their choice of winter roost. Among 1,276 records, 82% were recaptured in the town of original ringing. Again shifts towards the centrally situated roost were more numerous than between the peripheral pair. The frequency of returns varied significantly with the month of ringing, being higher for December-March, lower for July-November and April-May. Survival rates, calculated from returns after one and two breeding seasons, indicated an annual mortality of 60–72%, higher among juveniles than adults. Comparison of results of successive years suggested that unfavourable conditions in 1967 resulted in lower survival of juveniles in particular than in 1966. There was no evidence of mortality at the roost sites, and it is argued that heavy losses probably occur during the migratory journeys.  相似文献   

2.
SEASONAL CHANGES IN BODY-WEIGHT OF OYSTERCATCHERS HAEMATOPUS OSTRALEGUS   总被引:1,自引:0,他引:1  
P. J. Dare 《Ibis》1977,119(4):494-506
The body-weights of Oystercatchers Haematopus ostralegus wintering in Morecambe Bay, north-west England, showed marked seasonal changes between late summer and late winter, with considerable differences apparent between adult and immature birds. An attempt is made to relate these changes to recorded seasonal variations in prey biomass and to the annual cycles of breeding, moult and migration of the Oystercatcher. The mean weight of females invariably exceeded the mean weight of males in samples collected on the same dates, regardless of age. Adults returned from northern breeding areas in very lean condition, with mean weights ranging from 526 g in males to 540 g in females. Mean weight then increased progressively, due mainly to fat deposition, to a peak in March (up to 662 g in males and 675 g in females) around the time of their main departures for breeding. Heaviest birds then exceeded 800 g. Birds migrating to Iceland in spring would need to be of above average weight in March to make the shortest crossing (850 km, 13 h), via Scotland, while Oystercatchers of 700 g and over could probably make a direct flight (1500 km, 25 h) from Morecambe Bay in favourable weather. Breeding weights of British Oystercatchers were similar to those of post-breeders returning to Morecambe Bay in late August. The mean weights of first-year Oystercatchers arriving in August were very low, 449 g in males and 478 g in females. Their weights, and those of second- and third-year immatures, then rose rapidly in autumn, with some fat deposition, and reached mean values ranging between 551 g (males) and 597 g (females) by November-December. Mean weight then fell by 10–17% from December to March returning close to or below the September levels, whereas adults gained a further 6% during these winter months. Summer and autumn weight gains, and the major moult of adults and older immatures, occurred when the biomass of their two staple mollusc preys, Mytilus edulis (mussel) and Cardium edule (cockle), was maximal. Winter loss in mean weight of immatures corresponded with declining prey biomass, suggesting either that they were less efficient than adults in coping with deteriorating winter food supplies, or that they had no need to accumulate further (premigratory) fat reserves. The autumnal increases in mean weight of immatures are interpreted as an adaptation for withstanding adverse feeding conditions in winter. The Oystercatcher appears to be the only wader species in Britain in which adults increase, rather than lose, weight during the winter. This may be a consequence of an early breeding season, but it may be regarded also as a measure of the success Oystercatchers have achieved by specializing on a difficult but plentiful prey source.  相似文献   

3.
D. J. Pearson 《Ibis》1981,123(2):158-182
Some 5700 Ruffs were ringed in the southern Kenyan rift valley during 1967–79, mainly at Lakes Nakuru and Magadi. These have produced 15 recoveries outside East Africa, 14 in Siberia between 73° and 154°E and one in India. Adult males returned to Kenya mainly during August, and females during late August and early September. Females greatly outnumbered males at all times. Most wintering males departed late in March and early in April, but females not until about a month later. First-year birds appeared from the end of August, but remained in low numbers until late October or November. Most departed during April and May, but a few females oversummered. First-year birds typically accounted for about 25% of the wintering Nakuru females, but about 50% of those at Magadi. At both sites they accounted for a higher proportion of male birds than females. Most of the birds at Nakuru throughout late August to May appeared to be local winterers, and many individuals remained in the area for many months each year. Retrapping indicated that approximately 60% of each season's birds returned the following season. Adult males and most adult females commenced pre-winter wing moult before arrival, but completed most of it in Kenya. Males moulted 3–4 weeks ahead of females, and most had finished before December. Females typically finished during December and early January. Most second year birds timed their pre-winter moult similarly to older adults. Suspension was recorded in over 15% of all moulting birds examined. Adult pre-summer moult involved most or all of the tertials, some or all of the tail feathers, most of the inner wing coverts and the body and head plumage. It occurred mainly during January to March (males) or February to April (females), although tertial renewal commonly began a month earlier. Males showed no sign in Kenya of the supplementary prenuptial moult. First-year birds moulted from juvenile into first winter body plumage during late September to November. They underwent a pre-summer moult similar in extent and timing to that of adults, and again about a month earlier in males than females. Spring feathers acquired were often as brightly coloured as those of adults. About 15% of first-year birds renewed their outer 2–4 pairs of large primaries during January to April. Adult and first-year birds fattened before spring departure, commonly reaching weights 30–60% above winter mean. Weights of adult males peaked early in April, those of adult females early in May, and those of first-winter females later in May. Weights were relatively high also during August and September. This was due to the arrival of wintering birds carrying ‘spare’ reserves, and also apparently to the presence of a late moulting fattening passage contingent. The wing length of newly moulted adults was about 3 mm longer than that of newly arrived first-year birds, but there was no evidence of an increase in the wing kngth of adults with successive moults. Adult wing length decreased by 4–5 mm between the completion of one moult and the middle stages of the next. The migrations and annual timetable of Kenyan wintering Ruffs are discussed, and their moult strategy is compared with that of other Holarctic waders.  相似文献   

4.
D. J. Pearson 《Ibis》1984,126(1):1-15
Moult data were collected during 1967–80 from some 6900 Little Stints in the southern Kenyan rift valley.
Adults typically moulted from summer to winter body and head plumage during September and early October, soon after arrival. The complete pre-winter wing and tail moult began in most adults between mid-September and early October. Some birds finished by December, but others continued until February and March. Individual duration was usually between 100 and 150 days. Adults which completed this moult early often remoulted outer primaries between January and early April.
Young birds acquired first-winter body plumage during October and early November. Some 90% had a complete pre-winter wing and tail moult. This usually began between December and early February, and finished during March or early April, taking about 70–100 days. In about 10% of young birds, flight feather moult was restricted to the outer primaries and inner secondaries. Birds adopting this strategy typically began moult late, during January or February. Short periods of suspension were common during pre-winter wing moult, particularly in adults. The difference in moult speed between adult arid first-winter birds was attributable in the primary, secondary and tail tracts to differences in numbers of growing feathers.
Practically all birds completed a pre-summer moult involving the entire body and head plumage, most of the tertials, some or all of the tail feathers and many wing coverts. Most birds began this moult between early February and late March, and finished between mid-April and early May. It was typically later and more rapid in first-year birds than adults. In late birds, the onset of pre-summer moult was linked to the final stages of pre-winter moult.
The wing moult of the Little Stint in different wintering areas is discussed. First-winter moult strategy is compared with that in other small Calidris species.  相似文献   

5.
EDNA GORNEY  YORAM YOM-TOV 《Ibis》1994,136(2):185-192
Physical condition of migrating Steppe Buzzards Buteo buteo vulpinus was determined during spring migration at Elat, southern Israel, 1984–1988. An index based on measurements of body mass, wing-length and culmen was used to estimate fat content, based on fat extraction from nine buzzards. In addition, hydration condition was measured in 1988 and moult was checked in 1985–1988. More immatures (1001) than adults (459) were trapped, and a greater percentage of immatures (19.8%) than adults (8.4%) was retrapped during the same season. Adults had significantly greater fat reserves (4.5% of body mass) than immatures (3.8%). Most adults were in some stage of interrupted moult: however, active primary moult was noted only in immatures (10%). These findings suggest that different age groups use different migration strategies. Most of the buzzards trapped in this study could not have completed their entire migration using only stored fat: thus, hunting was probably necessary to replenish their energy reserves. No indication of water stress was found in the spring of 1988.  相似文献   

6.
Trans‐equatorial avian migrants tend to breed, moult and migrate – the main energy‐requiring events in their lifecycle – at different times. Little is known about the relationship between wing moult and pre‐migratory fuelling in waders on their non‐breeding grounds, where time is less constrained than during their brief high‐latitude breeding season. We determined age‐related strategies of Wood Sandpipers Tringa glareola to balance the energetic demands of primary moult against pre‐migratory fuelling in southern Africa by analysing body mass and primary moult at first capture of 1721 birds mist‐netted in 1972–96 at waterbodies in Zimbabwe. Adults moulted all their primaries in August–December, but immatures underwent a supplemental moult of varying numbers of outer primaries in December–April, close to departure. We used locally weighted linear regression to estimate trends in Wood Sandpiper body mass from 1 July to 1 May. They maintained low mass from arrival in July–September to February–early March. Adults fuelled from 10 February to 1 May at a mean rate of 0.25 g/day (sd = 0.16). Most adults (98%) began fuelling 10–75 days after completing primary moult. Immatures fuelled from 4 March to 13 April at 0.24 g/day (sd = 0.14). They used varying strategies depending on their condition: a brief gap between moult and fuelling; an overlap of these processes near departure, leading to slower fuelling; or skipping fuelling altogether and staying in southern Africa for a ‘gap year’. Immatures moulting three or five outer primaries fuelled more slowly than post‐moult birds. Immatures moulting four outer primaries started fuelling 3 weeks later but at a higher rate than did post‐moult birds of this group. In post‐moult immatures, the later they ended moult, the later and faster they fuelled. The heaviest adults and immatures using all moult patterns accumulated fuel loads of c. 50% of lean body mass, and could potentially cross 2397–4490 km to reach the Great Rift Valley in one non‐stop flight. Immatures were more flexible in the timing and extent of moult and in the timing and rate of fuelling than adults. This flexibility enables inexperienced Wood Sandpipers to cope with inter‐annual differences in feeding conditions at Africa's ephemeral inland waterbodies.  相似文献   

7.
Little is known about the biology of waders wintering in southern Asia; this paper deals with the Grey Plover Pluvialis squatarola, a species extensively studied only in western Europe. Adult Grey Plovers wintering in southeastern India underwent primary moult in autumn; the duration was estimated to be 127 days, with mean starting date 1 September and mean completion date 5 January. Some first-year Grey Plovers initiated primary moult in late winter and spring, and completed this moult the following spring. The average mass of adults on arrival in September was 200 g, fluctuated close to 220 g from October to February, and increased to 280 g near the end of May. The mass variation did not show the January peak observed in western Europe. Breeding productivity, measured as the percentage of first-year birds in winter catches, varied between 5% and 70% over six years, and showed a positive correlation with that of Dark-bellied Brent Geese Branta b. bernicla in western Europe and Curlew Sandpipers Calidris ferruginea in South Africa.  相似文献   

8.
Dunlin migration in northeast Italy is described. An attempt to identify the main routes and staging areas used by birds wintering in the central Mediterranean is presented. The results of monthly counts from 1990–1995 revealed that the bulk of the population occupied the wintering area in October and left for the breeding grounds in April and May. The analysis of 342 Italian recoveries of foreign ringed birds showed that 65% were ringed during post-breeding migration through the Baltic Sea, whereas just a few birds had been ringed in western Europe. First-year birds arrived in autumn with a single migratory wave, peaking in October. Two categories of adults were identified during post-breeding migration: birds which directly reached Italian wintering sites and birds which arrived after they had suspended their migration for moulting: the Azov/Black Sea wetlands are suggested as possible moulting areas. Out of 2444 adults and 1627 first-years ringed between 1989 and 1996 at our study area, we obtained a total of 42 recoveries abroad and evidence of direct links between Azov/Black Sea and N Adriatic wetlands, both during autumn and spring migrations. Primary moult was observed only in adults arriving early, the second migratory wave being composed of moulted birds. Locally moulting adults adopted a moult strategy characterized by high raggedness scores, typical of resident moulters. Body mass was not affected by primary moult stage or intensity, winter mass values being reached two weeks after the average date of primary moult completion.  相似文献   

9.
Long-distance migrants have evolved complex strategies for the timing of their annual moult, fattening and migration cycles. These strategies are likely to vary at different stages of a bird's life. Ringing data on 6079 Grey Plovers Pluvialis squatarola , caught on the Wash, England, between 1959 and 1996, were analysed to relate migratory strategies to patterns of primary moult and body mass changes. Adults returning from breeding grounds had a shorter and delayed primary moult (duration 90 days, starting date 19 August) in comparison with over-summering birds (duration 109 days, starting date 5 June). Three categories of migrant adults were identified on the basis of primary moult and body mass: (1) birds which did not moult, but increased body mass and migrated further south; (2) birds which moulted 1–3 inner primaries, suspended moult, increased body mass and migrated; and (3) birds which completed or suspended moult and wintered locally. In birds of the second category, timing of primary moult and body mass increase overlapped. Among wintering birds, 38% were in suspended moult. Ninety-six per cent of birds that suspended moult at the beginning of winter were males and almost all completed moult in spring. Grey Plovers which left Britain in autumn had an average body mass of 280 g, enough to reach southern Morocco without refuelling. Both wintering adults and first-year birds showed a prewinter body mass increase, peaking in December. Adults had a synchronized premigratory body mass increase in May, which suggested a negligible presence of African migrants. The average departure mass for spring migration, estimated at 316 g, would allow birds to fly non-stop to the Siberian breeding grounds in western Taymyr.  相似文献   

10.
Measurements were made of Oystercatcher corpses to find the most reliable measure of body condition in live birds. Total body weight was as accurate as muscle thickness in assessing the weight of the pectoral muscles, a major store of protein reserves. Total body weight was also a good indicator of fat reserves. Wing‐length was the most reliable measure of body size. Body condition in live birds was measured as an individual's residual weight derived from a general linear model of (loge) body weight against age, month, (loge) wing‐length and time since capture. On the Exe estuary in autumn, there was no significant difference in body condition between same‐age Oystercatchers of different diets and feeding methods. In the winter months, however, body condition differed significantly between mussel feeders using different feeding methods, and between mussel feeders and birds that fed on worms and clams. Differences between diet/feeding methods were not the same for each age group. Birds with the highest mean body condition index in adults were mussel hammerers, in immatures mussel stabbers and in juveniles, worm/clam feeders. No significant difference in body condition was found between the sexes in any age group in autumn. In winter, when birds with the same diet/feeding method were considered, females were significantly heavier than males. However, when birds of all diets and feeding methods were combined, weight differences between the sexes were not apparent. We examine reasons why birds with certain diets and feeding methods may be heavier than others in winter, and why females are sometimes heavier than males. We conclude that, in most cases, it is due to differences between birds in their ability to achieve a common target weight. However, we conclude that adult females try to achieve a higher target weight than males, probably as a premigratory and prebreeding strategy. In the light of this, we consider the consequences for adult females, in terms of reproductive success and survival, of specializing in diets and feeding methods associated with lower body weights in winter.  相似文献   

11.
LUCIA LIU SEVERINGHAUS 《Ibis》1996,138(3):460-465
Brown Shrikes Lanius cristatus are both transients and winter residents in Taiwan. Large numbers of birds crowd into the available habitat during the transient period, and the cost of maintaining territories changes greatly, depending on the number of shrikes present. This study examined how wintering Brown Shrikes adapt to the changing level of competition in territory establishment. About 24% of autumn transients arrived before any wintering birds, while 73% of wintering birds arrived during autumn transient time. The frequency of aggression recorded was significantly related to the number of birds seen along the transect line that day. Among ringed birds that returned during transient time, 80% returned directly to their previous territories, but some waited for the departure of transient birds before establishing territories. Territory compression occurred at high population densities. Departure from and arrival at the study area were frequent during the winter, but no birds moved territories within the study area. On average, 25% of ringed wintering shrikes returned to the study site in the subsequent years, while no transients returned. This low site tenacity may be. in part, a result of a high persecution rate along the migration route.  相似文献   

12.
Elliot, C: C. H., Waltner, M., Underhill. L. G., Pringle, J. S. & Dick, W. J. A. 1976. The migration system of the Curlew Sandpiper Calidris ferruginea in Africa. Ostrich 47:191-213. Data on ringing and recoveries of Curlew Sandpiper, mainly from the Cape, South Africa are presented. Possible migration routes to the breeding grounds are considered in the light of these and other recoveries from the rest of Africa. Retraps show that the species exhibits ortstreue and some evidence is presented which suggests that some birds may travel together and stay in the south in the same flock during one and subsequent migrations. Sex ratio statistics show an excess of females. Adults complete a full primary moult in the Cape between September and February, taking about 140 days but there is a lot of individual variation. Data from Mauritania show primary moult starting faster, a month earlier than in the Cape, and arrested moult in a few adults. The difference may be because Mauritanian birds move on further south while the Cape is the end point of the migration. Kenyan moult records from the Rift Valley follow the Cape pattern except that some birds arrest moult and finish later. Juvenile moult is shown to be different from that of adults, involving only a moult of the outer primaries and taking place during the overwintering period, April to August. All juveniles in the Cape are thought to overwinter and the modified moult to be an adaptation to this behaviour. The weight of adults but not juveniles increases markedly in the six weeks before migration. Fat and protein analyses suggest that the increase is entirely due to deposition of migratory fat. Kenyan birds have lower mean weights and deposit fat about two weeks later than those at the Cape. The nearer the non-breeding quarters are to the breeding grounds, the earlier moult starts and the later fat deposition takes place.  相似文献   

13.
Ian C. T.  Nisbet Lord  Medway 《Ibis》1972,114(4):451-494
A population of 400–600 Acrocephalus orientalis wintering in a Phragmites habitat at 3°N in West Malaysia was studied during four northern hemisphere winters, by means of systematic mist-netting. Data from other study-areas, other habitats and other winters are also used. Intensive mist-netting appears to have made birds move over longer distances than they did in the absence of disturbance, and to have led to the emigration of marked birds from the study-area. Trapping also affected feeding behaviour, resulting in weight-loss; repeated trapping may have increased mortality. Males and females could be separated by means of wing-length in fresh plumage. Females were largely confined to Phragmites; males were more numerous on the edge of reed-beds and in scrub vegetation. Males suffered greater feather-wear than females. As measured by the trapping rate, birds were uniformly distributed throughout the Phragmites habitat, at the same density in different winters. Undisturbed birds used a “home-range” of 1–4 ha, overlapping with 15–50 other individuals. Disturbed birds overlapped with 100–200 others. Individual birds returned to exactly the same “home-range” in successive winters. After correcting for the effects of disturbance and incomplete sampling, the proportion of adults ringed in one winter which returned in the next is estimated as 65% in each of two study-areas. This is a minimum estimate of the annual survival rate for adults. Mean total body-weights were at a minimum in midwinter (November-February). Fat-free weights were also lower in midwinter than in autumn and spring. Body-moult was observed in March and April. Moult of the flight-feathers takes place between July and September, on the breeding grounds or slightly to the south. Females departed on spring migration between 10 and 25 May; males some 11–14 days earlier. Adults arrived in autumn between 8 September and 7 October; males and females often came in in separate “waves”. Females were absent for only about 127 days, about the minimum required for migration, breeding and moult. Dates of migration match those of the more northern breeding populations. Spring departure is later than dates of passage recorded in south China; hence birds of this population appear to make long nights. On average, birds departing in spring carried about 9 g of fat, roughly 40% of total fat-free body-weight. This is about half the energy reserve required for the entire journey. Dates of passage in central China are consistent with a hypothesis that they make the journey (4,500-5,000 km) in two “hops”. A few birds which remained light until very late in the spring showed a significantly lower return rate in the next year. Most birds arriving in autumn appear to have carried 1–2 g of fat, but some were at or below the normal fat-free weight. Many birds appear to have lost weight soon after arrival. Returning ringed adults were amongst the very first birds trapped in September. Individual birds appear to have migrated on very similar dates in different years: many of the dates of trapping differed by 2 days or less in successive years. Trapping rates reached a peak in early October and then declined rapidly, reaching the midwinter level by 21 October. The decline coincided with the differential disappearance of juvenile birds. However, birds collected at this time had adequate fat reserves, and the disappearance appears to have preceded the period of food-shortage. It is suggested that the loss of juvenile birds resulted from behavioural interactions favouring the more dominant individuals, as has been described for several temperate zone residents. The first few weeks in the wintering area may thus be the critical period of mortality during the year. Because birds from different breeding areas are expected to be mixed in the winter-quarters, and vice versa, local mortality factors in winter may affect a number of breeding populations. High adult survival rates have been recorded in several other birds which breed in the temperate zones and winter in the tropics. In general their breeding success appears to be high, so the first-year mortality must be high. The closely related A. arundinaceus, which winters in Africa, differs from A. orientalis in size, wing-shape, timing of spring migration and timing of moult. These differences can be interpreted as adaptations to different environmental (primarily climatic) factors experienced during migration and on the breeding grounds. The segregation of males and females into different habitats probably reduces inter-sexual competition in winter, but this is not necessarily its primary function. Males collected in the evening in Phragmites had smaller fat reserves than females, suggesting that the females are better adapted to this habitat. The large size of the males is probably maintained in part by sexual selection in the breeding season. On the other hand, the size of females and their habitat is probably limited by the specialisation of their nest. These factors would suffice to explain the sexual dimorphism in size and habitat.  相似文献   

14.
The heaviest clutches (2 eggs) laid by Woodpigeons Columba palumbus in a Cambridgeshire study area weighed 30% more than the lightest. Yet the variation in egg-weight within clutches was less than 1 %. Irrespective of initial weight, eggs lost weight at the same constant rate during incubation. Heavy eggs hatched more successfully than light eggs and none weighing less than 16 g hatched. There was no correlation between chicks' weight at hatching and their weight at day 6 during the July-September part of the breeding season. The ability to feed crop milk at this stage could compensate for low chick-weight, but this might not be true early in the season. Weight at day 6 was correlated with the weight at day 16 or 17. The growth pattern is discussed. Chicks in broods of one achieved a higher weight at day 17 than those in broods of two. The survival rate both in and after leaving the nest was the same in both brood-sizes. Chick-weight in artificially created broods of three was almost as high as in broods of two, but again data refer to the July-September period when abundant cereal food is available. Survival before and after fledging was lower in broods of three. Clutch- and egg-weight declined from April until September. It is suggested that this is adaptive, in that the adults produce heavier eggs when food supplies are most difficult to collect. The critical period probably occurs during the few days when the adult must produce crop milk and the young cannot be left unattended. Thus egg-weight depends on the female's capacity to acquire nutrients, and is related to the needs of embryonic development and the amount of compensation in nutrient supply which can be provided immediately after hatching. But clutch-size is more related to the bird's ability to feed and rear young to the point of fledging, thereby influencing the number of offspring which survive to leave progeny. Egg-weight and female body-weight were positively correlated in females weighing less than 480 g but not in heavier females. First-year birds did not acquire adult weight until midsummer and they would probably produce light eggs if they could breed before this month. However, their gonads do not recrudesce until July and this prevents them breeding in the spring. Seasonal changes in body-weight and fat content of adults and first-year birds are described and discussed; differences were noted between adult males and females which were considered to be adaptive. The moult is described. It begins in April and continues until November, approximately one pair of primaries being replaced per month. The moult ceases during the winter months, when it is known that food supplies become limiting. Woodpigeons lay light eggs relative to their body-weight but can achieve the extra parental care needed for the altricial chicks by producing crop milk. Because the moult is extended, the energy demands of moulting and breeding combined are relatively low and this enables the Woodpigeon to have a long breeding season and to moult coincidentally.  相似文献   

15.
Oschadleus, H.D., Underhill, G.D. & Underhill, L.G. 2000. Timing of breeding and primary moult of the Masked Weaver Ploceus velatus in the summer and winter rainfall regions of South Africa. Ostrich 71 (1 & 2): 91–94.

Timing of breeding and moult is analysed in the Masked Weaver Ploceus velatus. It is common throughout southern Africa, which is largely a summer rainfall area. This species expanded its range into the Western Cape, a winter rainfall region, in the twentieth century. The peak breeding period is one month earlier in the winter rainfall area (September to November) than in the summer rainfall area (October to December). The mean starting date of primary moult is one month earlier in the winter rainfall area (9 January) than in the summer rainfall area (15 February). The duration of primary moult is similar in both regions (74 days in the winter rainfall area and 80 days in the summer rainfall area).  相似文献   

16.
ARGOS satellite telemetry and Global Location Sensors (geolocators) were used to identify the moult locations and the winter foraging dispersal of Adélie penguins after they left their breeding colonies on Signy Island in the South Orkney Islands. Animals were tracked during the period December 2004 to October 2005. All birds displayed a similar pattern of migratory behaviour, remaining away from colonies for approximately 9 months, at distances of up to 2,235 km. Moult locations were within the pack ice. Mean daily travel speeds to the moult locations were significantly faster when moving through open water than through pack ice. Moult occurred during February/March within a narrow latitudinal range (65–71°S), at a mean distance of 126 km from the ice edge; the mean duration of individual moult was c. 18.6 days. After moult, penguins spent the subsequent winter months moving north or north-eastward within the expanding winter pack ice, at a mean distance of 216 km from the ice edge, and in areas with ice cover >80%. The penguins returned to the vicinity of their colony between September 26 and October 22, 2005. This dependence of Adélie penguins on sea ice habitat suggests that any further reductions in sea ice extent in the Weddell Sea region would potentially have important impacts on the population processes of this pagophilic species.  相似文献   

17.
Timing and duration of primary moult in three populations of Purple Sandpipers Calidris maritima were described and discussed in relation to the birds’ need to complete moult before the onset of winter, when resources are required for survival. We predicted that moult would be completed earlier by birds wintering at higher latitudes. The south Norwegian breeding population, which moults and winters along the coast of east Britain (54–57°N) had a mean starting date of 21 July for primary moult (16 July for females and 24 July for males), a mean duration of 61 days, and completed on 20 September. Resident Icelandic (64–65°N) birds had a mean starting date of 22 July for primary moult (17 July for females and 25 July for males), a mean duration of 51 days, and completed on 11 September. Birds moulting in north Norway (70°N) arrived in north Norway in suspended primary moult or without having started moult, and completed it there. They had a mean completion date of 2 November for primary moult (31 October for females and 3 November for males). Starting date and duration could not be estimated because some suspended moult for an undetermined period, but it was thought that they started in late August. It is likely that most originated from Russia. The onset of moult appears to be set by the end of breeding and there is little overlap in these two events. The earlier start of moult by females in all three populations may be because they abandon the males when the chicks hatch, leaving the males to attend the chicks. Although the duration of primary moult followed the expected trend, being fastest in north Norway and slowest in Britain, the onset of moult was so late in north Norway that they had an unexpectedly late completion date, despite their rapid moult. The late completion of primary moult in north Norway suggests that wintering in the far north may not pose the energetic constraints on Purple Sandpipers that had previously been supposed.  相似文献   

18.
D. J. Pearson 《Ibis》1971,113(2):173-185
Between March 1966 and May 1968 Palaearctic passerines were mist-netted in thick bush and lightly wooded savannah habitats near Kampala, on the northern shore of Lake Victoria. This paper reports weights of the seven principal species involved. Most migrants appeared to be in a lean condition during the winter months, when weights were relatively low and varied little in each species. Birds were not particularly light on arrival. In fact, autumn Garden Warblers Sylvia borin and Willow Warblers Phylloscopus trochilus were sometimes markedly heavy, and for the former species there was some evidence that the individuals concerned were passage migrants. Autumn weights of Swallows Hirundo rustica, Reed Warblers Acrocephalus scirpaceus and Yellow Wagtails Motacilla flava were similar to those recorded in winter. The mean weight of all species rose during late March or early April. Although most Garden Warblers and Willow Warblers trapped at the time of spring migration were within the normal winter weight range, many Acrocephalus warblers and the majority of Sand Martins Riparia riparia and Yellow Wagtails were rather heavy. Spring weights 40% or more above mean winter weight were not uncommon in the Sedge Warbler Acrocephalus schoenobaenus, but were recorded only occasionally in other species. Although most passerine migrants evidently left Kampala with substantial fat reserves, it was concluded that a considerable number of warblers departed at rather low weight. High spring weights were mainly confined to a period of two or three weeks in each of the warbler species. Locally wintering Acrocephalus warblers must have attained full premigratory weights within three weeks, and a number of spring retraps showed substantial gains at minimum mean rates of between 0–1 and 0–35 g per day. Most heavy Garden Warblers were probably on passage. Significant correlations between weight and wing-length were obtained for all species investigated, regressions of weight on wing-length being in the range 011-0-25 g/mm. Spring weights are briefly compared with data from Nigeria, and the northward migration of passerines from Lake Victoria is discussed.  相似文献   

19.
In England juvenile Willow warblers undergo premigratory lipid deposition in August. Prior to this there is a moult of the juvenile plumage which results in a reduction in both the glycogen content and the wet weight of the pectoralis muscles, the latter reflecting a decrease in the lipid-free dry weight. Muscle lipid levels are apparently unaffected by this moult. The decrease in the weight of the lipid-free dry fraction of the body extends also to components other than these muscles at this time. A correlation between the wet weight and the glycogen content of the pectoralis muscles suggests that cold stress may be the cause of the low glycogen levels found in the middle of the moult; part of this increased demand for thermogenesis may be due to lower body insulation brought about by feather loss during the moult. The muscle "hypertrophy" found in the premigratory period is simply a return to pre-moult weights.
The uniformity of total body weights during and after the moult indicates that at the end of this moult the water fraction of the body decreases in weight. The pectoralis muscles of juvenile Willow warblers are not fully grown on fledging; these unmoulted birds may also have higher body lipid levels than during the following moult.  相似文献   

20.
Adrian  Craig 《Ibis》1983,125(3):346-352
Wing-moult of the Cape Glossy Starling, Red-winged Starling, Pale-winged Starling and Pied Starling was examined primarily from specimens in southern African museums. Breeding data were obtained from nest record cards.
The Cape Glossy Starling breeds from October to March, with the moult period from December to May. There is no evidence of moult-breeding overlap in individual birds. The Red-winged Starling breeds from September to March, while the moult takes place between November and April, overlapping with the second broods. The Pale-winged Starling breeds from October to April and moults between November and May. The Pied Starling moults between November and April, while breeding varies regionally, occurring concurrently with moulting in some areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号