首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The organization of bacteriochlorophyll c (BChl c) molecules was studied in normal and carotenoid-deficient chlorosomes isolated from the green phototrophic bacterium Chloroflexus aurantiacus. Carotenoid-deficient chlorosomes were obtained from cells grown in the presence of 60 µg of 2-hydroxybiphenyl per ml. At this concentration, BChl c synthesis was not affected while the formation of the 5.7 kDa chlorosome polypeptide was inhibited by about 50% (M. Foidl et al., submitted). Absorption, linear dichroism and circular dichroism spectroscopy showed that the organization of BChl c molecules with respect to each other as well as to the long axis of the chlorosomes was similar for both types of chlorosomes. Therefore, it is concluded that the organization of BChl c molecules is largely independent on the presence of the bulk of carotenoids as well as of at least half of the normal amount of the 5.7 kDa polypeptide. The Stark spectra of the chlorosomes, as characterized by a large difference polarizability for the ground- and excited states of the interacting BChl c molecules, were much more intense than those of individual pigments. It is proposed that this is caused by the strong overlap of BChl c molecules in the chlorosomes. In contrast to individual chlorophylls, BChl c in chlorosomes did not give rise to a significant difference permanent dipole moment for the ground- and excited states. This observation favors models for the BChl c organization which invoke the anti-parallel stacking of linear BChl c aggregates above those models in which linear BChl c aggregates are stacked in a parallel fashion. The difference between the Stark spectrum of carotenoid-deficient and WT chlorosomes indicates that the carotenoids are in the vicinity of the BChls.  相似文献   

2.
《BBA》1987,891(3):275-285
The formation of excited states and energy transfer in chlorosomes of the green photosynthetic bacteria Chlorobium limicola and Chloroflexus aurantiacus were studied by measurements of flash-induced absorbance changes and fluorescence. Upon excitation with 35 ps, 532 nm flashes, large absorbance decreases around 750 nm were observed that were due to the disappearance of ground state absorption of the main pigment, bacteriochlorophyll (BChl) c. The absorbance changes decayed after the flash with a time constant of approx. 1 ns, together with faster components. Absorbance changes that could be ascribed to formation of excited BChl a were much smaller than those of BChl c. The yields of BChl c and BChl a fluorescence were measured as a function of the energy density of the exciting flash. At high energy a strong quenching occurred caused by annihilation of singlet excited states. An analysis of the results shows that energy transfer between BChl c molecules is very efficient and that in C. limicola excitations can probably move freely through the entire chlorosome (which contains about 10 000 BChls c). The chlorosome thus serves as a common antenna for several reaction centres. The small amounts of BChl a present in the chlorosomes of both species form clusters of only a few molecules. Upon cooling to 4 K the sizes of the domains of BChl c for energy transfer decreased considerably. The results are discussed in relation to recently suggested models for the pigment organization within chlorosomes.  相似文献   

3.
The role of carotenoids in chlorosomes of the green sulfur bacterium Chlorobium phaeobacteroides, containing bacteriochlorophyll (BChl) e and the carotenoid (Car) isorenieratene as main pigments, was studied by steady-state fluorescence excitation, picosecond single-photon timing and femtosecond transient absorption (TA) spectroscopy. In order to obtain information about energy transfer from Cars in this photosynthetic light-harvesting antenna with high spectral overlap between Cars and BChls, Car-depleted chlorosomes, obtained by inhibition of Car biosynthesis by 2-hydroxybiphenyl, were employed in a comparative study with control chlorosomes. Excitation spectra measured at room temperature give an efficiency of 60–70% for the excitation energy transfer from Cars to BChls in control chlorosomes. Femtosecond TA measurements enabled an identification of the excited state absorption band of Cars and the lifetime of their S1 state was determined to be 10 ps. Based on this lifetime, we concluded that the involvement of this state in energy transfer is unlikely. Furthermore, evidence was obtained for the presence of an ultrafast (>100 fs) energy transfer process from the S2 state of Cars to BChls in control chlorosomes. Using two time-resolved techniques, we further found that the absence of Cars leads to overall slower decay kinetics probed within the Qy band of BChl e aggregates, and that two time constants are generally required to describe energy transfer from aggregated BChl e to baseplate BChl a.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

4.
"Candidatus Chloracidobacterium thermophilum" is a recently discovered chlorophototroph from the bacterial phylum Acidobacteria, which synthesizes bacteriochlorophyll (BChl) c and chlorosomes like members of the green sulfur bacteria (GSB) and the green filamentous anoxygenic phototrophs (FAPs). The pigments (BChl c homologs and carotenoids), quinones, lipids, and hopanoids of cells and chlorosomes of this new chlorophototroph were characterized in this study. "Ca. Chloracidobacterium thermophilum" methylates its antenna BChls at the C-8(2) and C-12(1) positions like GSB, but these BChls were esterified with a variety of isoprenoid and straight-chain alkyl alcohols as in FAPs. Unlike the chlorosomes of other green bacteria, "Ca. Chloracidobacterium thermophilum" chlorosomes contained two major xanthophyll carotenoids, echinenone and canthaxanthin. These carotenoids may confer enhanced protection against reactive oxygen species and could represent a specific adaptation to the highly oxic natural environment in which "Ca. Chloracidobacterium thermophilum" occurs. Dihydrogenated menaquinone-8 [menaquinone-8(H(2))], which probably acts as a quencher of energy transfer under oxic conditions, was an abundant component of both cells and chlorosomes of "Ca. Chloracidobacterium thermophilum." The betaine lipid diacylglycerylhydroxymethyl-N,N,N-trimethyl-β-alanine, esterified with 13-methyl-tetradecanoic (isopentadecanoic) acid, was a prominent polar lipid in the membranes of both "Ca. Chloracidobacterium thermophilum" cells and chlorosomes. This lipid may represent a specific adaptive response to chronic phosphorus limitation in the mats. Finally, three hopanoids, diploptene, bacteriohopanetetrol, and bacteriohopanetetrol cyclitol ether, which may help to stabilize membranes during diel shifts in pH and other physicochemical conditions in the mats, were detected in the membranes of "Ca. Chloracidobacterium thermophilum."  相似文献   

5.
Both photogeneration and quenching of singlet oxygen by monomeric and aggregated (dimeric and oligomeric) molecules of bacteriochlorophyll (BChl) d have been studied in solution and in chlorosomes isolated from the green photosynthetic bacterium Chlorobium vibrioforme f. thiosulfatophilum. The yield of singlet-oxygen photogeneration by pigment dimers was about 6 times less than for monomers. Singlet oxygen formation was not observed in oligomer-containing solutions or in chlorosomes. To estimate the efficiency of singlet oxygen quenching an effective rate constant for 1O2 quenching by BChl molecules (kq M) was determined using the Stern-Volmer equation and the total concentration of BChl d in the samples. In solutions containing only monomeric BChl, the kq M values coincide with the real values for 1O2 quenching rate constants by BChl molecules. Aggregation weakly influenced the kq M values in pigment solutions. In chlorosomes (which contain both BChl and carotenoids) the kq M value was less than in solutions of BChl alone and much less than in acetone extracts from chlorosomes. Thus 1O2 quenching by BChl and carotenoids is much less efficient in chlorosomes than in solution and is likely caused primarily by BChl molecules which are close to the surface of the large chlorosome particles. The data allow a general conclusion that monomeric and dimeric chlorophyll molecules are the most likely sources of 1O2 formation in photosynthetic systems and excitation energy trapping by the long wavelength aggregates as well as 1O2 physical quenching by monomeric and aggregated chlorophyll can be considered as parts of the protective system against singlet oxygen formation.Abbreviations BChl bacteriochlorophyll - MBpd methyl bacteriopheophorbide - Chl chlorophyll - TPP meso-tetraphenylporphyrin - TPPS meso-tetra (p-sulfophenyl) porphyrin  相似文献   

6.
A chlorosome is an antenna complex located on the cytoplasmic side of the inner membrane in green photosynthetic bacteria that contains tens of thousands of self-assembled bacteriochlorophylls (BChls). Green bacteria are known to incorporate various esterifying alcohols at the C-17 propionate position of BChls in the chlorosome. The effect of these functional substitutions on the biogenesis of the chlorosome has not yet been fully explored. In this report, we address this question by investigating various esterified bacteriochlorophyll c (BChl c) homologs in the thermophilic green non-sulfur bacterium Chloroflexus aurantiacus. Cultures were supplemented with exogenous long-chain alcohols at 52 °C (an optimal growth temperature) and 44 °C (a suboptimal growth temperature), and the morphology, optical properties and exciton transfer characteristics of chlorosomes were investigated. Our studies indicate that at 44 °C Cfl. aurantiacus synthesizes more carotenoids, incorporates more BChl c homologs with unsaturated and rigid polyisoprenoid esterifying alcohols and produces more heterogeneous BChl c homologs in chlorosomes. Substitution of phytol for stearyl alcohol of BChl c maintains similar morphology of the intact chlorosome and enhances energy transfer from the chlorosome to the membrane-bound photosynthetic apparatus. Different morphologies of the intact chlorosome versus in vitro BChl aggregates are suggested by small-angle neutron scattering. Additionally, phytol cultures and 44 °C cultures exhibit slow assembly of the chlorosome. These results suggest that the esterifying alcohol of BChl c contributes to long-range organization of BChls, and that interactions between BChls with other components are important to the assembly of the chlorosome. Possible mechanisms for how esterifying alcohols affect the biogenesis of the chlorosome are discussed.  相似文献   

7.
The build-up and decay of bacteriochlorophyll (BChl) and carotenoid triplet states were studied by flash absorption spectroscopy in (a) the B800-850 antenna complex ofRhodobacter (Rb.)sphaeroides wild type strain 2.4.1, (b) theRb. sphaeroides R-26.1 B850 light-harvesting complex incorporated with spheroidene, (c) the B850 complex incorporated with 3,4-dihydrospheroidene, (d) the B850 complex incorporated with 3,4,5,6-tetrahydrospheroidene and (e) theRb. sphaeroides R-26.1 B850 complex lacking carotenoids. Steady state absorption and circular dichroism spectroscopy were used to evaluate the structural integrity of the complexes. The transient data were fit according to either single or double exponential rate expressions. The triplet lifetimes of the carotenoids were observed to be 7.0±0.1 s for the B800-850 complex, 14±2 s for the B850 complex incorporated with spheroidene, and 19±2 s for the B850 complex incorporated with 3,4-dihydrospheroidene. The BChl triplet lifetime in the B850 complex was 80±5 s. No quenching of BChl triplet states was seen in the B850 complex incorporated with 3,4,5,6-tetrahydrospheroidene. For the B850 complex incorporated with spheroidene and with 3,4-dihydrospheroidene, the percentage of BChl quenched by carotenoids was found to be related to the percentage of carotenoid incorporation. The triplet energy transfer efficiencies are compared to the values for singlet energy transfer measured previously (Frank et al. (1993) Photochem. Photobiol. 57: 49–55) on the same samples. These studies provide a systematic approach to exploring the effects of state energies and lifetimes on energy transfer between BChls and carotenoids in vivo.  相似文献   

8.
Bacteriochlorophyll (BChl) c was extracted from Chloroflexus aurantiacus and purified by reverse-phase high-pressure liquid chromatography. This pigment consists of a complex mixture of homologues, the major component of which is 4-ethyl-5-methylbacteriochlorophyll c stearyl ester. Unlike previously characterized BChls c, the pigment from C. aurantiacus is a racemic mixture of diastereoisomers with different configurations at the 2a chiral center. Diluting a concentrated methylene chloride solution of BChl c with hexane produces an oligomer with absorption maxima at 740-742 and at 460-462 nm. Both the absorption spectrum and the fluorescence emission spectrum (maximum at 750 nm) of this oligomer closely match those of BChl c in chlorosomes. Further support for this model comes from the ability of alcohols, which disrupt BChl c oligomers by ligating the central Mg atom, to convert BChl c in chlorosomes to a monomeric form when added in low concentrations. The lifetime of fluorescence from the 740 nm absorbing BChl c oligomer is about 80 ps. Although exciton quenching might be unusually fast in the in vitro BChl c oligomer because of its large size and/or the presence of minor impurities, this result suggests that energy transfer from the BChl c antenna in chlorosomes must be very fast if it is to be efficient.  相似文献   

9.
Chlorosomes are the light-harvesting organelles in photosynthetic green bacteria and typically contain large amounts of bacteriochlorophyll (BChl) c in addition to smaller amounts of BChl a, carotenoids, and several protein species. We have isolated vestigial chlorosomes, denoted carotenosomes, from a BChl c-less, bchK mutant of the green sulfur bacterium Chlorobium tepidum. The physical shape of the carotenosomes (86 ± 17 nm × 66 ± 13 nm × 4.3 ± 0.8 nm on average) was reminiscent of a flattened chlorosome. The carotenosomes contained carotenoids, BChl a, and the proteins CsmA and CsmD in ratios to each other comparable to their ratios in wild-type chlorosomes, but all other chlorosome proteins normally found in wild-type chlorosomes were found only in trace amounts or were not detected. Similar to wild-type chlorosomes, the CsmA protein in the carotenosomes formed oligomers at least up to homo-octamers as shown by chemical cross-linking and immunoblotting. The absorption spectrum of BChl a in the carotenosomes was also indistinguishable from that in wild-type chlorosomes. Energy transfer from the bulk carotenoids to BChl a in carotenosomes was poor. The results indicate that the carotenosomes have an intact baseplate made of remarkably stable oligomeric CsmA–BChl a complexes but are flattened in structure due to the absence of BChl c. Carotenosomes thus provide a valuable material for studying the biogenesis, structure, and function of the photosynthetic antennae in green bacteria.  相似文献   

10.
Green-sulfur bacteria have evolved a unique light-harvesting apparatus, the chlorosome, by which it is perfectly adapted to thrive photosynthetically under extremely low light conditions. We have used single-particle, optical spectroscopy to study the structure-function relationship of chlorosomes each of which incorporates hundreds of thousands of self-assembled bacteriochlorophyll (BChl) molecules. The electronically excited states of these molecular assemblies are described as Frenkel excitons whose photophysical properties depend crucially on the mutual arrangement of the pigments. The signature of these Frenkel excitons and its relation to the supramolecular organization of the chlorosome becomes accessible by optical spectroscopy. Because subtle spectral features get obscured by ensemble averaging, we have studied individual chlorosomes from wild-type Chlorobaculum tepidum by polarization-resolved fluorescence-excitation spectroscopy. This approach minimizes the inherent sample heterogeneity and allows us to reveal properties of the exciton states without ensemble averaging. The results are compared with predictions from computer simulations of various models of the supramolecular organization of the BChl monomers. We find that the photophysical properties of individual chlorosomes from wild-type Chlorobaculum tepidum are consistent with a (multiwall) helical arrangement of syn-anti stacked BChl molecules in cylinders and/or spirals of different size.  相似文献   

11.
Green-sulfur bacteria have evolved a unique light-harvesting apparatus, the chlorosome, by which it is perfectly adapted to thrive photosynthetically under extremely low light conditions. We have used single-particle, optical spectroscopy to study the structure-function relationship of chlorosomes each of which incorporates hundreds of thousands of self-assembled bacteriochlorophyll (BChl) molecules. The electronically excited states of these molecular assemblies are described as Frenkel excitons whose photophysical properties depend crucially on the mutual arrangement of the pigments. The signature of these Frenkel excitons and its relation to the supramolecular organization of the chlorosome becomes accessible by optical spectroscopy. Because subtle spectral features get obscured by ensemble averaging, we have studied individual chlorosomes from wild-type Chlorobaculum tepidum by polarization-resolved fluorescence-excitation spectroscopy. This approach minimizes the inherent sample heterogeneity and allows us to reveal properties of the exciton states without ensemble averaging. The results are compared with predictions from computer simulations of various models of the supramolecular organization of the BChl monomers. We find that the photophysical properties of individual chlorosomes from wild-type Chlorobaculum tepidum are consistent with a (multiwall) helical arrangement of syn-anti stacked BChl molecules in cylinders and/or spirals of different size.  相似文献   

12.
Chlorosomes are sac-like, light-harvesting organelles that characteristically contain very large numbers of bacteriochlorophyll (BChl) c, d, or e molecules. These antenna structures occur in chlorophototrophs belonging to some members of the Chlorobi and Chloroflexi phyla and are also found in a recently discovered member of the phylum Acidobacteria, "Candidatus Chloracidobacterium thermophilum." "Ca. Chloracidobacterium thermophilum" is the first aerobic organism discovered to possess chlorosomes as light-harvesting antennae for phototrophic growth. Chlorosomes were isolated from "Ca. Chloracidobacterium thermophilum" and subjected to electron microscopic, spectroscopic, and biochemical analyses. The chlorosomes of "Ca. Chloracidobacterium thermophilum" had an average size of ~100 by 30 nm. Cryo-electron microscopy showed that the BChl c molecules formed folded or twisted, sheet-like structures with a lamellar spacing of ~2.3 nm. Unlike the BChls in the chlorosomes of the green sulfur bacterium Chlorobaculum tepidum, concentric cylindrical nanotubes were not observed. Chlorosomes of "Ca. Chloracidobacterium thermophilum" contained a homolog of CsmA, the BChl a-binding, baseplate protein; CsmV, a protein distantly related to CsmI, CsmJ, and CsmX of C. tepidum, which probably binds a single [2Fe-2S] cluster; and five unique polypeptides (CsmR, CsmS, CsmT, CsmU, and a type II NADH dehydrogenase homolog). Although "Ca. Chloracidobacterium thermophilum" is an aerobe, energy transfer among the BChls in these chlorosomes was very strongly quenched in the presence of oxygen (as measured by quenching of fluorescence emission). The combined analyses showed that the chlorosomes of "Ca. Chloracidobacterium thermophilum" possess a number of unique features but also share some properties with the chlorosomes found in anaerobic members of other phyla.  相似文献   

13.
The photosynthetic light-harvesting systems of purple bacteria and plants both utilize specific carotenoids as quenchers of the harmful (bacterio)chlorophyll triplet states via triplet-triplet energy transfer. Here, we explore how the binding of carotenoids to the different types of light-harvesting proteins found in plants and purple bacteria provides adaptation in this vital photoprotective function. We show that the creation of the carotenoid triplet states in the light-harvesting complexes may occur without detectable conformational changes, in contrast to that found for carotenoids in solution. However, in plant light-harvesting complexes, the triplet wavefunction is shared between the carotenoids and their adjacent chlorophylls. This is not observed for the antenna proteins of purple bacteria, where the triplet is virtually fully located on the carotenoid molecule. These results explain the faster triplet-triplet transfer times in plant light-harvesting complexes. We show that this molecular mechanism, which spreads the location of the triplet wavefunction through the pigments of plant light-harvesting complexes, results in the absence of any detectable chlorophyll triplet in these complexes upon excitation, and we propose that it emerged as a photoprotective adaptation during the evolution of oxygenic photosynthesis.  相似文献   

14.
Chromatophores from photosynthetic bacteria were excited with flashes lasting approx. 15 ns. Transient optical absorbance changes not associated with the photochemical electron-transfer reactions were interpreted as reflecting the conversion of bacteriochlorophyll or carotenoids into triplet states. Triplet states of various carotenoids were detected in five strains of bacteria; triplet states of bacteriochlorophyll, in two strains that lack carotenoids. Triplet states of antenna pigments could be distinguished from those of pigments specifically associated with the photochemical reaction centers. Antenna pigments were converted into their triplet states if the photochemical apparatus was oversaturated with light, if the primary photochemical reaction was blocked by prior chemical oxidation of P-870 or reduction of the primary electron acceptor, or if the bacteria were genetically devoid of reaction centers. Only the reduction of the electron acceptor appeared to lead to the formation of triplet states in the reaction centers.In the antenna bacteriochlorophyll, triplet states probably arise from excited singlet states by intersystem crossing. The antenna carotenoid triplets probably are formed by energy transfer from triplet antenna bacteriochlorophyll. The energy transfer process has a half time of approx. 20 ns, and is about 1 × 103 times more rapid than the reaction of the bacteriochlorophyll triplet states with O2. This is consistent with a role of carotenoids in preventing the formation of singlet O2 in vivo. In the absence of carotenoids and O2, the decay half times of the triplet states are 70 μs for the antenna bacteriochlorophyll and 6–10 μs for the reaction center bacteriochlorophyll. The carotenoid triplets decay with half times of 2–8 μs.With weak flashes, the quantum yields of the antenna triplet states are in the order of 0.02. The quantum yields decline severely after approximately one triplet state is formed per photosynthetic unit, so that even extremely strong flashes convert only a very small fraction of the antenna pigments into triplet states. The yield of fluorescence from the antenna bacteriochlorophyll declines similarly. These observations can be explained by the proposal that singlet-triplet fusion causes rapid quenching of excited singlet states in the antenna bacteriochlorophyll.  相似文献   

15.
Optical and structural properties of the B875 light-harvesting complex of purple bacteria were examined by measurements of low-temperature circular dichroism (CD) and excitation spectra of fluorescence polarization. In the B875 complex isolated from wild-type Rhodopseudomonas sphaeroides, fluorescence polarization increased steeply across the long-wavelength Qy bacteriochlorophyll a (BChl) absorption band at both 4 and approx. 300 K. With the native complex in the photosynthetic membranes of Rhodospirillum rubrum and Rps. sphaeroides wild-type and R26-carotenoidless strains, this significant increase in polarization from 0.12 to 0.40 was only observed at low temperature. A polarization of ?0.2 was observed upon excitation in the Qx BChl band. The results indicate that about 15% of the BChl molecules in the complex absorb at wavelengths about 12 nm longer than the other BChls. All BChls have approximately the same orientation with their Qy transition dipoles essentially parallel and their Qx transitions perpendicular to the plane of the membrane. At low temperature, energy transfer to the long-wavelength BChls is irreversible, yielding a high degree of polarization upon direct excitation, whereas at room temperature a partial depolarization of fluorescence by energy transfer between different subunits occurs in the membrane, but not in the isolated complex. CD spectra appear to reflect the two spectral forms of B875 BChl in Rps. sphaeroides membranes. They also reveal structural differences between the complexes of Rps. sphaeroides and Rhs. rubrum, in both BChl and carotenoid regions. The CD spectrum of isolated B875 indicates that the interactions between the BChls but not the carotenoids are altered upon isolation.  相似文献   

16.
In the present study the rate of triplet transfer from chlorophyll to carotenoids in solubilized LHCII was investigated by flash spectroscopy using laser pulses of approximately 2 ns for both pump and probe. Special attention has been paid to calibration of the experimental setup and to avoid saturation effects. Carotenoid triplets were identified by the pronounced positive peak at approximately 507 nm in the triplet-singlet difference spectra. DeltaOD (507 nm) exhibits a monoexponential relaxation kinetics with characteristic lifetimes of 2-9 micros (depending on the oxygen content) that was found to be independent of the pump pulse intensity. The rise of DeltaOD (507 nm) was resolved via a pump probe technique where an optical delay of up to 20 ns was used. A thorough analysis of these experimental data leads to the conclusion that the kinetics of carotenoid triplet formation in solubilized LHCII is almost entirely limited by the lifetime of the excited singlet state of chlorophyll but neither by the pulse width nor by the rate constant of triplet-triplet transfer. Within the experimental error the rate constant of triplet-triplet transfer from chlorophyll to carotenoids was estimated to be kTT > (0.5 ns)-1. This value exceeds all data reported so far by at least one order of magnitude. The implications of this finding are briefly discussed.  相似文献   

17.
Redox functions of carotenoids in photosynthesis   总被引:1,自引:0,他引:1  
Frank HA  Brudvig GW 《Biochemistry》2004,43(27):8607-8615
Carotenoids are well-known as light-harvesting pigments. They also play important roles in protecting the photosynthetic apparatus from damaging reactions of chlorophyll triplet states and singlet oxygen in both plant and bacterial photosynthesis. Recently, it has been found that beta-carotene functions as a redox intermediate in the secondary pathways of electron transfer within photosystem II and that carotenoid cation radicals are transiently formed after photoexcitation of bacterial light-harvesting complexes. The redox role of beta-carotene in photosystem II is unique among photosynthetic reaction centers and stems from the very strongly oxidizing intermediates that form in the process of water oxidation. Because of the extended pi-electron-conjugated system of carotenoid molecules, the cation radical is delocalized. This enables beta-carotene to function as a "molecular wire", whereby the centrally located oxidizing species is shuttled to peripheral redox centers of photosystem II where it can be dissipated without damaging the system. The physiological significance of carotenoid cation radical formation in bacterial light-harvesting complexes is not yet clear, but may provide a novel mechanism for excitation energy dissipation as a means of photoprotection. In this paper, the redox reactions of carotenoids in photosystem II and bacterial light-harvesting complexes are presented and the possible roles of carotenoid cation radicals in photoprotection are discussed.  相似文献   

18.
New and rapid procedures were developed for the isolation of chlorosomes and FMO-protein from the green sulfur bacteria Prosthecochloris (P.) aestuarii, Chlorobium (Cb.) phaeovibrioides, Cb. tepidum and Cb. vibrioforme. The resulting preparations were free from contaminating pigments and proteins as was shown by absorption spectroscopy, pigment analysis and SDS-PAGE. Two spectrally different types of FMO-protein were found. The first type, present in P. aestuarii and Cb. vibrioforme, has a main absorption band at 6 K at 815 nm, whereas the second type, isolated from Cb. tepidum and Cb. phaeovibrioides, has a strong band at 806 nm. In contrast to what was recently suggested (Tronrud DE and Matthews BW (1993) In: Deisenhofer J and Norris J (eds) The Photosynthetic Reaction Center, Vol 1, pp 13–21. Academic Press, San Diego, CA) the FMO-proteins contained no polar BChl a homologue. The isolated chlorosomes showed a small blue-shift of the QY absorption maximum with respect to intact cells. For the different species, grown under the same light conditions, the homologue composition of BChls c and d was approximately identical whereas for the BChl e in Cb. phaeovibrioides the relative amounts of homologues with larger alkyl substituents at position 8 were considerably larger. Baseplate BChl a was present in all chlorosomes and comprised 1–2% of the chlorosomal BChl. Its QY absorption band was located at about 802 nm and was clearly separated from the major QY absorption band at 6 K. The predominant esterifying alcohol of BChl a in the chlorosomes as well as in the FMO-proteins was phytol, but both antenna complexes also contained small amounts of BChl a esterified with the metabolic intermediates geranylgeraniol, dihydrogeranylgeraniol and tetrahydrogeranylgeraniol, like most purple bacteria. Since the esterifying alcohols of the chlorosomal BChl a and of the main chlorosomal pigments (BChls c, d and e) are different, esterification, and perhaps also the synthesis, of the BChls in the interior of the chlorosome and of the BChls in the baseplate must be spatially and genetically separated processes.  相似文献   

19.
The bacteriochlorophyll (P-800 and P-870) of the carotenoidless photoreaction center isolated from Rhodospirillum rubrum (strain G9) is bleached irreversibly when the preparations are exposed to intense near infrared light in the presence of oxygen. This effect is much smaller in preparations, extracted from the wild type, which contain, as shown earlier, 1 mol of spirilloxanthin per mol of P-870. This photodynamic effec is shown to be due to singlet O2. The oxidation of adrenaline in the presence of superoxide dismutase and the oxidation of 1,3-diphenylisobenzofuran are used as reporter reactions. Singlet oxygen is presumably generated by the triplet-triplet energy transfer 3bacteriochlorophyll → O2 (3Σ).Four purified bacterial carotenoids, spirilloxanthin, sphaeroidene, sphaeroidenone and chloroxanthin were attached onto the carotenoidless photoreaction center from strain G9 in nearly 1 : 1 mol ratios with respect to P-870. Once fixed, these carotenoids confer protection against the photodynamic bleaching of bacteriochlorophyll. The relative photoprotection efficiency was 1.0 for spirilloxanthin and sphaeroidene, 0.4 for chloroxanthin and 0.2 for sphaeroidenone. The fixed carotenoids display optical activity and their molar ellipticity appears to be correlated with their relative photoprotection efficiency. The efficiency of energy transfer to P-870 is 0.90 for sphaeroidene, 0.35 for sphaeroidenone, 0.30 for chloroxanthin and 0.20 for spirilloxanthin. The energy transfer efficiency from the carotenoids to bacteriochlorophyll is suggested to be governed by the rate of the internal conversion processes of the excited singlet state of the carotenoids.A study of the difference absorption and CD spectra of the reconstituted minus carotenoidless preparations leads to the interpretation that the fixed carotenoids are in a central monocis conformation.  相似文献   

20.
Bacteriochlorophyll c pigments extracted from light harvesting chlorosomes in green photosynthetic bacteria are known to self-assemble into aggregates whose electronic spectroscopy resembles that of intact chlorosomes. Femtosecond optical experiments reveal that the chlorosomes and their reconstituted aggregates exhibit closely analogous internal energy transfer kinetics and exciton state evolution. These comparisons furnish compelling new evidence that proteins do not exert a major local role in the BChl c antenna pigment organization of intact chlorosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号