首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Emergence of human immunodeficiency virus type 1 (HIV-1) populations that switch or broaden coreceptor usage from CCR5 to CXCR4 is intimately coupled to CD4+ cell depletion and disease progression toward AIDS. To better understand the molecular mechanisms involved in the coreceptor switch, we determined the nucleotide sequences of 253 V1 to V3 env clones from 27 sequential HIV-1 subtype B isolates from four patients with virus populations that switch coreceptor usage. Coreceptor usage of clones from dualtropic R5X4 isolates was characterized experimentally. Sequence analysis revealed that 9% of the clones from CXCR4-using isolates had originated by recombination events between R5 and X4 viruses. The majority (73%) of the recombinants used CXCR4. Furthermore, coreceptor usage of the recombinants was determined by a small region of the envelope, including V3. This is the first report demonstrating that intrapatient recombination between viruses with distinct coreceptor usage occurs frequently. It has been proposed that X4 viruses are more easily suppressed by the immune system than R5 viruses. We hypothesize that recombination between circulating R5 viruses and X4 viruses can result in chimeric viruses with the potential to both evade the immune system and infect CXCR4-expressing cells. The broadening in cell tropism of the viral population to include CXCR4-expressing cells would gradually impair the immune system and eventually allow the X4 population to expand. In conclusion, intrapatient recombination between viruses with distinct coreceptor usage may contribute to the emergence of X4 viruses in later stages of infection.  相似文献   

2.
The basis for the switch from CCR5 to CXCR4 coreceptor usage seen in approximately 50% of human immunodeficiency virus type 1 (HIV-1) subtype B-infected individuals as disease advances is not well understood. Among the reasons proposed are target cell limitation and better immune recognition of the CXCR4 (X4)-tropic compared to the CCR5 (R5)-tropic virus. We document here X4 virus emergence in a rhesus macaque (RM) infected with R5-tropic simian/human immunodeficiency virus, demonstrating that coreceptor switch can happen in a nonhuman primate model of HIV/AIDS. The switch to CXCR4 usage in RM requires envelope sequence changes in the V3 loop that are similar to those found in humans, suggesting that the R5-to-X4 evolution pathways in the two hosts overlap. Interestingly, compared to the inoculating R5 virus, the emerging CXCR4-using virus is highly neutralization sensitive. This finding, coupled with the observation of X4 evolution and appearance in an animal with undetectable circulating virus-specific antibody and low cellular immune responses, lends further support to an inhibitory role of antiviral immunity in HIV-1 coreceptor switch.  相似文献   

3.
We developed a recombinant virus technique to determine the coreceptor usage of human immunodeficiency virus type 1 (HIV-1) from plasma samples, the source expected to represent the most actively replicating virus population in infected subjects. This method is not subject to selective bias associated with virus isolation in culture, a step required for conventional tropism determination procedures. The addition of a simple subcloning step allowed semiquantitative evaluation of virus populations with a different coreceptor (CCR5 or CXCR4) usage specificity present in each plasma sample. This procedure detected mixtures of CCR5- and CXCR4-exclusive virus populations as well as dualtropic viral variants, in variable proportions. Sequence analysis of dualtropic clones indicated that changes in the V3 loop are necessary for the use of CXCR4 as a coreceptor, but the overall context of the V1-V3 region is important to preserve the capacity to use CCR5. This convenient technique can greatly assist the study of virus evolution and compartmentalization in infected individuals.  相似文献   

4.

Objective

Coreceptor switch from CCR5 to CXCR4 is associated with HIV disease progression. The molecular and evolutionary mechanisms underlying the CCR5 to CXCR4 switch are the focus of intense recent research. We studied the HIV-1 tropism dynamics in relation to coreceptor usage, the nature of quasispecies from ultra deep sequencing (UDPS) data and their phylogenetic relationships.

Methods

Here, we characterized C2-V3-C3 sequences of HIV obtained from 19 patients followed up for 54 to 114 months using UDPS, with further genotyping and phylogenetic analysis for coreceptor usage. HIV quasispecies diversity and variability as well as HIV plasma viral load were measured longitudinally and their relationship with the HIV coreceptor usage was analyzed. The longitudinal UDPS data were submitted to phylogenetic analysis and sampling times and coreceptor usage were mapped onto the trees obtained.

Results

Although a temporal viral genetic structuring was evident, the persistence of several viral lineages evolving independently along the infection was statistically supported, indicating a complex scenario for the evolution of viral quasispecies. HIV X4-using variants were present in most of our patients, exhibiting a dissimilar inter- and intra-patient predominance as the component of quasispecies even on antiretroviral therapy. The viral populations from some of the patients studied displayed evidences of the evolution of X4 variants through fitness valleys, whereas for other patients the data favored a gradual mode of emergence.

Conclusions

CXCR4 usage can emerge independently, in multiple lineages, along the course of HIV infection. The mode of emergence, i.e. gradual or through fitness valleys seems to depend on both virus and patient factors. Furthermore, our analyses suggest that, besides becoming dominant after population-level switches, minor proportions of X4 viruses might exist along the infection, perhaps even at early stages of it. The fate of these minor variants might depend on both viral and host factors.  相似文献   

5.
Recent epidemiologic studies show increasing human immunodeficiency virus type 1 (HIV-1) transmission through oral-genital contact. This paper examines the possibility that normal human oral keratinocytes (NHOKs) might be directly infected by HIV or might convey infectious HIV virions to adjacent leukocytes. PCR analysis of proviral DNA constructs showed that NHOKs can be infected by CXCR4-tropic (NL4-3 and ELI) and dualtropic (89.6) strains of HIV-1 to generate a weak but productive infection. CCR5-tropic strain Ba-L sustained minimal viral replication. Antibody inhibition studies showed that infection by CXCR4-tropic viral strains is mediated by the galactosylceramide receptor and the CXCR4 chemokine coreceptor. Coculture studies showed that infectious HIV-1 virions can also be conveyed from NHOKs to activated peripheral blood lymphocytes, suggesting a potential role of oral epithelial cells in the transmission of HIV infection.  相似文献   

6.
The human immunodeficiency virus (HIV) infects a wide range of human cells. Cell entry is mediated through the CD4 receptor and a variety of coreceptors, most importantly the chemokine receptors CCR5 and CXCR4. Some antiretroviral agents selectively inhibit different HIV phenotypes depending on their coreceptor usage. Here, we analyse mathematical models, which describe the in vivo interaction of HIV phenotypes, differing in their coreceptor usage, with two target cell types (naive and memory CD4+ T cells). In particular, we investigate how the selection pressures on CCR5- and CXCR4-using HIV variants change as a result of treatment with coreceptor-specific antiretroviral agents. Our main result is that CXCR4 inhibitors increase the selection pressure in favor of the emergence of CCR5-using variants, thus selecting for coexistence of CXCR4- and CCR5-using variants, whereas CCR5 inhibitors increase the selection pressure against CCR5-using variants, thus selecting against coexistence. These results shed new light on the potential risks and benefits of coreceptor inhibitors.  相似文献   

7.
The chemokine receptors CCR5 and CXCR4 are the major coreceptors for human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV). At least 12 other chemokine receptors or close relatives support infection by particular HIV and SIV strains on CD4(+) transformed indicator cell lines in vitro. However, the role of these alternative coreceptors in vivo is presently thought to be insignificant. Infection of cell lines expressing high levels of recombinant CD4 and coreceptors thus does not provide a true indication of coreceptor use in vivo. We therefore tested primary untransformed cell cultures that lack CCR5 and CXCR4, including astrocytes and brain microvascular endothelial cells (BMVECs), for naturally expressed alternative coreceptors functional for HIV and SIV infection. An adenovirus vector (Ad-CD4) was used to express CD4 in CD4(-) astrocytes and thus confer efficient infection if a functional coreceptor is present. Using a large panel of viruses with well-defined coreceptor usage, we identified a subset of HIV and SIV strains able to infect two astrocyte cultures derived from adult brain tissue. Astrocyte infection was partially inhibited by several chemokines, indicating a role for the chemokine receptor family in the observed infection. BMVECs were weakly positive for CD4 but negative for CCR5 and CXCR4 and were susceptible to infection by the same subset of isolates that infected astrocytes. BMVEC infection was efficiently inhibited by the chemokine vMIP-I, implicating one of its receptors as an alternative coreceptor for HIV and SIV infection. Furthermore, we tested whether the HIV type 1 and type 2 strains identified were able to infect peripheral blood mononuclear cells (PBMCs) via an alternative coreceptor. Several strains replicated in Delta32/Delta32 CCR5 PBMCs with CXCR4 blocked by AMD3100. This AMD3100-resistant replication was also sensitive to vMIP-I inhibition. The nature and potential role of this alternative coreceptor(s) in HIV infection in vivo is discussed.  相似文献   

8.
Worldwide, human immunodeficiency virus (HIV) is transmitted predominantly by heterosexual contact. Here, we investigate for the first time, by examining mononuclear cells obtained from cervicovaginal tissue, the mechanisms whereby HIV type 1 (HIV-1) directly targets cells from the human genital tract. In contrast to earlier findings in mucosal models such as human skin, we demonstrate that the majority of T cells and macrophages but none or few dendritic cells (DC) express the HIV-1 coreceptor CCR5 in normal human cervicovaginal mucosa, whereas all three cell types express the coreceptor CXCR4. To understand the role of coreceptor expression on infectivity, mucosal mononuclear cells were infected with various HIV-1 isolates, using either CCR5 or CXCR4. Unstimulated T cells become rapidly, albeit nonproductively, infected with R5- and X4-tropic variants. However, DC and T cells form stable conjugates which permit productive infection by viruses of both coreceptor specificities. These results indicate that HIV-1 can exploit T-cell-DC synergism in the human genital tract to overcome potential coreceptor restrictions on DC and postentry blocks of viral replication in unactivated T cells. Thus, mononuclear cells infiltrating the genital mucosa are permissive for transmission of both R5- and X4-tropic HIV-1 variants, and selection of virus variants does not occur by differential expression of HIV-1 coreceptors on genital mononuclear cells.  相似文献   

9.
We use a mathematical model to determine the factors affecting the delayed or rare coreceptor switch in HIV-1 subtype C infected individuals. The model takes into account the two main target cells for the CXCR4-tropic and CCR5-tropic virus and includes the the lytic and non-lytic immune responses. Computer-based simulations and a sensitivity analysis of the model predict that a persistent immune response suppresses the CXCR4-tropic virus to low levels and hence preventing a phenotypic switch. However, not only should the immune response be persistent, but it should have an efficient lytic immune response rather that an efficient non-lytic response. In addition, we also find that the availability of macrophage cells and enhanced viral kinetics are also crucial for the dominance of the R5 strain. We suggest that an altered host environment probably as a result of immune activation may explain the difference in coreceptor switching kinetics between HIV-1 subtype B and subtype C individuals.  相似文献   

10.
Early infection of the thymus with the human immunodeficiency virus (HIV) may explain the more rapid disease progression among children infected in utero than in children infected intrapartum. Therefore, we analyzed infection of thymocytes in vitro by HIV type 1 primary isolates, obtained at or near birth, from 10 children with different disease outcomes. HIV isolates able to replicate in the thymus and impact thymopoiesis were present in all infants, regardless of the timing of viral transmission and the rate of disease progression. Isolates from newborns utilized CCR5, CXCR4, or both chemokine receptors to enter thymocytes. Viral expression was observed in discrete thymocyte subsets postinfection with HIV isolates using CXCR4 (X4) and isolates using CCR5 (R5), despite the wider distribution of CXCR4 in the thymus. In contrast to previous findings, the X4 primary isolates were not more cytopathic for thymocytes than were the R5 isolates. The cytokines interleukin-2 (IL-2), IL-4, and IL-7 increased HIV replication in the thymus by inducing differentiation and expansion of mature CD27(+) thymocytes expressing CXCR4 or CCR5. IL-2 and IL-4 together increased expression of CXCR4 and CCR5 in this population, whereas IL-4 and IL-7 increased CXCR4 but not CCR5 expression. IL-2 plus IL-4 increased the viral production of all pediatric isolates, but IL-4 and IL-7 had a significantly higher impact on the replication of X4 isolates compared to R5 isolates. Our studies suggest that coreceptor use by HIV primary isolates is important but is not the sole determinant of HIV pathogenesis in the thymus.  相似文献   

11.
12.
We studied the distribution of human immunodeficiency virus type 1 (HIV-1) DNA in CCR5-positive and -negative peripheral blood lymphocyte populations in HIV-1-infected individuals. While HIV-1 DNA in the CCR5-positive population showed no correlation with CD4 count, the increase of total HIV-1 DNA with lower CD4 count was mainly contributed by the increase of HIV-1 DNA in the CCR5-negative population. This might indicate the change in coreceptor usage from CCR5 to CXCR4 in later stages of disease progression. However, some of the samples with a high viral DNA load in the CCR5-negative population did not have any characteristic of the V3 loop sequence that is compatible with CXCR4 usage or the syncytium-inducing (SI) phenotype. We also did not find any known characteristic change predictive of the SI phenotype in V1 and V2 sequences. Our findings showed that there might be a shift in target cell populations during disease progression, and this shift was not necessarily associated with the genetic changes characteristic of CXCR4 usage.  相似文献   

13.
A change in coreceptor preference from CCR5 to CXCR4 towards the end stage disease in some HIV-1 infected individuals has been well documented, but the reasons and mechanisms for this tropism switch remain elusive. It has been suggested that envelope structural constraints in accommodating amino acid changes required for CXCR4 usage is an obstacle to tropism switch, limiting the rate and pathways available for HIV-1 coreceptor switching. The present study was initiated in two R5 SHIV(SF162P3N)-infected rapid progressor macaques with coreceptor switch to test the hypothesis that an early step in the evolution of tropism switch is the adoption of a less constrained and more "open" envelope conformation for better CD4 usage, allowing greater structural flexibility to accommodate further mutational changes that confer CXCR4 utilization. We show that, prior to the time of coreceptor switch, R5 viruses in both macaques evolved to become increasingly sCD4-sensitive, suggestive of enhanced exposure of the CD4 binding site and an "open" envelope conformation, and this correlated with better gp120 binding to CD4 and with more efficient infection of CD4(low) cells such as primary macrophages. Moreover, significant changes in neutralization sensitivity to agents and antibodies directed against functional domains of gp120 and gp41 were seen for R5 viruses close to the time of X4 emergence, consistent with global changes in envelope configuration and structural plasticity. These observations in a simian model of R5-to-X4 evolution provide a mechanistic basis for the HIV-1 coreceptor switch.  相似文献   

14.
Early in infection, human immunodeficiency virus type 1 (HIV-1) generally uses the CCR5 chemokine receptor (along with CD4) for cellular entry. In many HIV-1-infected individuals, viral genotypic changes arise that allow the virus to use CXCR4 (either in addition to CCR5 or alone) as an entry coreceptor. This switch has been associated with an acceleration of both CD3(+) T-cell decline and progression to AIDS. While it is well known that the V3 loop of gp120 largely determines coreceptor usage and that positively charged residues in V3 play an important role, the process of genetic change in V3 leading to altered coreceptor usage is not well understood. Further, the methods for biological phenotyping of virus for research or clinical purposes are laborious, depend on sample availability, and present biosafety concerns, so reliable methods for sequence-based "virtual phenotyping" are desirable. We introduce a simple bioinformatic method of scoring V3 amino acid sequences that reliably predicts CXCR4 usage (sensitivity, 84%; specificity, 96%). This score (as determined on the basis of position-specific scoring matrices [PSSM]) can be interpreted as revealing a propensity to use CXCR4 as follows: known R5 viruses had low scores, R5X4 viruses had intermediate scores, and X4 viruses had high scores. Application of the PSSM scoring method to reconstructed virus phylogenies of 11 longitudinally sampled individuals revealed that the development of X4 viruses was generally gradual and involved the accumulation of multiple amino acid changes in V3. We found that X4 viruses were lost in two ways: by the dying off of an established X4 lineage or by mutation back to low-scoring V3 loops.  相似文献   

15.
At the early stage of infection, human immunodeficiency virus (HIV)-1 predominantly uses the CCR5 coreceptor for host cell entry. The subsequent emergence of HIV variants that use the CXCR4 coreceptor in roughly half of all infections is associated with an accelerated decline of CD4+ T-cells and rate of progression to AIDS. The presence of a ‘fitness valley’ separating CCR5- and CXCR4-using genotypes is postulated to be a biological determinant of whether the HIV coreceptor switch occurs. Using phylogenetic methods to reconstruct the evolutionary dynamics of HIV within hosts enables us to discriminate between competing models of this process. We have developed a phylogenetic pipeline for the molecular clock analysis, ancestral reconstruction, and visualization of deep sequence data. These data were generated by next-generation sequencing of HIV RNA extracted from longitudinal serum samples (median 7 time points) from 8 untreated subjects with chronic HIV infections (Amsterdam Cohort Studies on HIV-1 infection and AIDS). We used the known dates of sampling to directly estimate rates of evolution and to map ancestral mutations to a reconstructed timeline in units of days. HIV coreceptor usage was predicted from reconstructed ancestral sequences using the geno2pheno algorithm. We determined that the first mutations contributing to CXCR4 use emerged about 16 (per subject range 4 to 30) months before the earliest predicted CXCR4-using ancestor, which preceded the first positive cell-based assay of CXCR4 usage by 10 (range 5 to 25) months. CXCR4 usage arose in multiple lineages within 5 of 8 subjects, and ancestral lineages following alternate mutational pathways before going extinct were common. We observed highly patient-specific distributions and time-scales of mutation accumulation, implying that the role of a fitness valley is contingent on the genotype of the transmitted variant.  相似文献   

16.
The biological phenotype of primary human immunodeficiency virus type 1 (HIV-1) isolates varies according to the severity of the HIV infection. Here we show that the two previously described groups of rapid/high, syncytium-inducing (SI) and slow/low, non-syncytium-inducing (NSI) isolates are distinguished by their ability to utilize different chemokine receptors for entry into target cells. Recent studies have identified the C-X-C chemokine receptor CXCR4 (also named fusin or Lestr) and the C-C chemokine receptor CCR5 as the principal entry cofactors for T-cell-line-tropic and non-T-cell-line-tropic HIV-1, respectively. Using U87.CD4 glioma cell lines, stably expressing the chemokine receptor CCR1, CCR2b, CCR3, CCR5, or CXCR4, we have tested chemokine receptor specificity for a panel of genetically diverse envelope glycoprotein genes cloned from primary HIV-1 isolates and have found that receptor usage was closely associated with the biological phenotype of the virus isolate but not the genetic subtype. We have also analyzed a panel of 36 well-characterized primary HIV-1 isolates for syncytium induction and replication in the same series of cell lines. Infection by slow/low viruses was restricted to cells expressing CCR5, whereas rapid/high viruses could use a variety of chemokine receptors. In addition to the regular use of CXCR4, many rapid/high viruses used CCR5 and some also used CCR3 and CCR2b. Progressive HIV-1 infection is characterized by the emergence of viruses resistant to inhibition by beta-chemokines, which corresponded to changes in coreceptor usage. The broadening of the host range may even enable the use of uncharacterized coreceptors, in that two isolates from immunodeficient patients infected the parental U87.CD4 cell line lacking any engineered coreceptor. Two primary isolates with multiple coreceptor usage were shown to consist of mixed populations, one with a narrow host range using CCR5 only and the other with a broad host range using CCR3, CCR5, or CXCR4, similar to the original population. The results show that all 36 primary HIV-1 isolates induce syncytia, provided that target cells carry the particular coreceptor required by the virus.  相似文献   

17.
During human immunodeficiency virus type 1 (HIV-1) infection, disease progression correlates with the occurrence of variants using the coreceptor CXCR4 for cell entry. In contrast, apathogenic simian immunodeficiency virus (SIV) from African green monkeys (SIVagm), specifically the molecular virus clone SIVagm3mc, uses CCR5, Bob, and Bonzo as coreceptors throughout the course of infection. The influence of an altered coreceptor usage on SIVagm3mc replication was studied in vitro and in vivo. The putative coreceptor binding domain, the V3 region of the surface envelope (SU) glycoprotein, was replaced by the V3 loop of a CD4- and CXCR4-tropic HIV-1 strain. The resulting virus, termed SIVagm3-X4mc, exclusively used CD4 and CXCR4 for cell entry. Consequently, its in vitro replication was inhibited by SDF-1, the natural ligand of CXCR4. Surprisingly, SIVagm3-X4mc was able to replicate in vitro not only in interleukin-2- and phytohemagglutinin-stimulated but also in nonstimulated peripheral blood mononuclear cells (PBMCs) from nonhuman primates. After experimental infection of two pig-tailed macaques with either SIVagm3-X4mc or SIVagm3mc, the coreceptor usage was maintained during in vivo replication. Cell-associated and plasma viral loads, as well as viral DNA copy numbers, were found to be comparable between SIVagm3mc and SIVagm 3-X4mc infections, and no pathological changes were observed up to 14 months postinfection. Interestingly, the V3 loop exchange rendered SIVagm3-X4mc susceptible to neutralizing antibodies present in the sera of SIVagm3-X4mc- and SIVagm3mc-infected pig-tailed macaques. Our study describes for the first time a successful exchange of a V3 loop in nonpathogenic SIVagm resulting in CD4 and CXCR4 usage and modulation of virus replication in nonstimulated PBMCs as well as sensitivity toward neutralization.  相似文献   

18.
We investigated whether capsianosides, diterpene glycosides, extracted from Capsicum plants could affect human immunodeficiency virus type 1 (HIV-1) infection. Significant effect on virus infection in MAGI/CCR5 cells was neither observed for the X4 virus by capsianosides II, XI, and A, nor for an R5 virus by capsianoside G. Apparent enhancement of X4 HIV-1 infection by capsianoside G was observed and exclusively related to the usage of the CXCR4 coreceptor. The capsianoside G-treated cells had no change in the expression level of CD4, CXCR4, and CCR5, however, colocalization and capping of CD4 and CXCR4, but not of CD4 and CCR5 was observed. Our results suggested that capsianoside G enhanced X4 virus infection at the level of viral penetration through the capping and colocalization of receptors needed for infection.  相似文献   

19.
We report here a second case of coreceptor switch in R5 simian-human immunodeficiency virus SF162P3N (SHIV(SF162P3N))-infected macaque CA28, supporting the use of this experimental system to examine factors that drive the change in coreceptor preference in vivo. Virus recovered from CA28 plasma (SHIV(CA28NP)) used both CCR5 and CXCR4 for entry, but the virus recovered from lymph node (SHIV(CA28NL)) used CXCR4 almost exclusively. Sequence and functional analyses showed that mutations in the V3 loop that conferred CXCR4 usage in macaque CA28 differed from those described in the previously reported case, demonstrating divergent mutational pathways for change in the coreceptor preference of the R5 SHIV(SF162P3N) isolate in vivo.  相似文献   

20.
Human immunodeficiency virus type 1 (HIV-1) preferentially utilizes the CCR5 coreceptor for target cell entry in the acute phase of infection, while later in disease progression the virus switches to the CXCR4 coreceptor in approximately 50% of patients. In response to HIV-1 the adaptive immune response is triggered, and antibody (Ab) production is elicited to block HIV-1 entry. We recently determined that dendritic cells (DCs) can efficiently capture Ab-neutralized HIV-1, restore infectivity, and transmit infectious virus to target cells. Here, we tested the effect of Abs on trans transmission of CCR5 or CXCR4 HIV-1 variants. We observed that transmission of HIV-1 by immature as well as mature DCs was significantly higher for CXCR4- than CCR5-tropic viral strains. Additionally, neutralizing Abs directed against either the gp41 or gp120 region of the envelope such as 2F5, 4E10, and V3-directed Abs inhibited transmission of CCR5-tropic HIV-1, whereas Ab-treated CXCR4-tropic virus demonstrated unaltered or increased transmission. To further study the effects of coreceptor usage we tested molecularly cloned HIV-1 variants with modifications in the envelope that were based on longitudinal gp120 V1 and V3 variable loop sequences from a patient progressing to AIDS. We observed that DCs preferentially facilitated infection of CD4+ T lymphocytes of viral strains with an envelope phenotype found late in disease. Taken together, our results illustrate that DCs transmit CXCR4-tropic HIV-1 much more efficiently than CCR5 strains; we hypothesize that this discrimination could contribute to the in vivo coreceptor switch after seroconversion and could be responsible for the increase in viral load.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号