首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Staphylococcus aureus is the most frequently isolated pathogen from wounds with multiple resistances to antibiotics. Honey has been demonstrated and reported to be effective antibacterial agent on Gram positive and Gram negative organisms. Hence, the present study was conducted to evaluate the in vitro antibacterial effect of Indian honeys on Staphylococcus aureus obtained from wounds. A total of 123 Staphylococcus aureus isolates along with ATCC 25923 were categorized as sensitive, multi drug resistant (MDR) and non-MDR strains. Out of total nine Indian honeys (three each of unifloral, multifloral and branded marketed honey) used, three unifloral and three multifloral honey samples showed antibacterial activity against all the organisms tested by Agar diffusion method but not the branded marketed honeys. The MIC values of all honey samples for all studied Staphylococcus aureus isolates ranged between 5-15% (v/v). Unifloral honey samples showed higher antibacterial activity than multifloral honey. The single sample of Jambhul honey showed the highest activity. Thus, Indian honeys were found to be effective for their antimicrobial activity on sensitive, non-MDR, MDR and ATCC strains of S. aureus.  相似文献   

2.
The purpose of this study was to: (i) evaluate the antibacterial activities of three Egyptian honeys collected from different floral sources (namely, citrus, clover, and marjoram) against Escherichia coli; (ii) investigate the effects of these honeys on bacterial ultrastructure; and (iii) assess the anti-virulence potential of these honeys, by examining their impacts on the expression of eight selected genes (involved in biofilm formation, quorum sensing, and stress survival) in the test organism. The minimum inhibitory concentration (MIC) of the honey samples against E. coli ATCC 8739 were assessed by the broth microdilution assay in the presence and absence of catalase enzyme. Impacts of the honeys on the cellular ultrastructure and the expression profiles of the selected genes of E. coli were examined using transmission electron microscopy (TEM) and quantitative real-time polymerase chain reaction (qPCR) analysis, respectively. The susceptibility tests showed promising antibacterial activities of all the tested honeys against E. coli. This was supported by the TEM observations, which revealed “ghost” cells lacking DNA, in addition to cells with increased vacuoles, and/or with irregular shrunken cytoplasm. Among the tested honeys, marjoram exhibited the highest total antibacterial activity and the highest levels of peroxide-dependent activity. The qPCR analysis showed that all honey-treated cells share a similar overall pattern of gene expression, with a trend toward reduced expression of the virulence genes of interest. Our results indicate that some varieties of the Egyptian honey have the potential to be effective inhibitor and virulence modulator of E. coli via multiple molecular targets.  相似文献   

3.
Kwakman PH  Zaat SA 《IUBMB life》2012,64(1):48-55
The antibacterial activity of honey has been known since the 19th century. Recently, the potent activity of honey against antibiotic-resistant bacteria has further increased the interest for application of honey, but incomplete knowledge of the antibacterial activity is a major obstacle for clinical applicability. The high sugar concentration, hydrogen peroxide, and the low pH are well-known antibacterial factors in honey and more recently, methylglyoxal and the antimicrobial peptide bee defensin-1 were identified as important antibacterial compounds in honey. The antibacterial activity of honey is highly complex due to the involvement of multiple compounds and due to the large variation in the concentrations of these compounds among honeys. The current review will elaborate on the antibacterial compounds in honey. We discuss the activity of the individual compounds, their contribution to the complex antibacterial activity of honey, a novel approach to identify additional honey antibacterial compounds, and the implications of the novel developments for standardization of honey for medical applications.  相似文献   

4.
A series of novel Schiff base derivatives have been designed and synthesized, and their biological activities were also evaluated as potential inhibitors of FabH. These compounds were assayed for antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis and Staphylococcus aureus. Compounds with potent antibacterial activities were tested for their E. coli FabH inhibitory activity. Compound 3v showed the most potent antibacterial activity with MIC of 1.56-6.25 μg/mL against the tested bacterial strains and exhibited the most potent E. coli FabH inhibitory activity with IC(50) of 4.3 μM. Docking simulation was performed to position compound 3v into the E. coli FabH active site to determine the probable binding conformation.  相似文献   

5.
A series of novel cinnamic acid secnidazole ester derivatives have been designed and synthesized, and their biological activities were also evaluated as potential inhibitors of FabH. These compounds were assayed for antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis and Staphylococcus aureus. Compounds with potent antibacterial activities were tested for their E. coli FabH inhibitory activity. Compound 3n showed the most potent antibacterial activity with MIC of 1.56-6.25 μg/mL against the tested bacterial strains and exhibited the most potent E. coli FabH inhibitory activity with IC?? of 2.5 μM. Docking simulation was performed to position compound 3n into the E. coli FabH active site to determine the probable binding conformation.  相似文献   

6.
Twenty-four enamines were synthesized and reported for the first time. Their chemical structures were confirmed by means of 1H NMR, ESI mass spectra, and elemental analyses, and four of them were determined by single crystal X-ray diffraction analysis. All of the compounds were assayed for antibacterial (Bacillus subtilis ATCC 6633, Escherichia coli ATCC 35218, Pseudomonas fluorescens ATCC 13525, and Staphylococcus aureus ATCC 6538) and antifungal (Aspergillus niger ATCC 16404, Candida albicans ATCC 10231, and Trichophyton rubrum ATCC 10218) activities by MTT method. Compounds (E)-ethyl 3-(4-hydroxyphenylamino)-2-(4-methoxyphenyl)acrylate (9b), (E)-ethyl 3-(3,5-difluorophenylamino)-2-(4-chlorophenyl)acrylate (11b), (E)-ethyl 3-(3,5-dichlorophenylamino)-2-(4-chlorophenyl)acrylate (12b), and (E)-ethyl 3-(4-methylphenylamino)-2-(4-chlorophenyl)acrylate (15b) showed considerable antibacterial activities against S. aureus ATCC 6538 with MICs of 3.8, 1.9, 1.1, and 0.9 microg/mL, respectively. Structure-activity relationship (SAR) analysis disclosed, generally, an E-isomer exhibited higher antibacterial activity than the corresponding Z-isomer. An electron-withdrawing group on A-ring led to some decrease in activity, while on B-ring, a similar substitution provided higher activity.  相似文献   

7.
Catalase activities of intact cells and cell-free extracts of coagulase-positive staphylococcal cultures 105B and 558D isolated from milk, culture 25042 from a clinical source, and Staphylococcus aureus 196E were determined at 32.2 C. Cultures were treated with 0.025 and 0.05% hydrogen peroxide at 37.8 and 54.4 C and without hydrogen peroxide at 54.4 C to determine the relationship between catalase activity and resistance to these treatments. The relationship held true for cultures 105B and 196E; culture 105B had the lowest catalase activity and lowest resistance to H(2)O(2) at 37.8 C, whereas S. aureus 196E possessed a high catalase activity and was most resistant at 37.8 C. Catalase activities of cell-free extracts of cultures 25042, 558, and 196E were similar, but resistance to H(2)O(2) at 37.8 C was greater for culture 196E. The lower resistance of culture 25042 was related to low catalase activities of whole cells of this culture, which were only one-third that of whole cells of culture 196E. Culture 558 was least resistant to heat treatment at 54.4 C and showed the greatest sensitivity to added H(2)O(2) at this temperature.  相似文献   

8.
The purpose of the present study was to investigate the antibacterial activity of seven ethanolic extracts and three aqueous extracts from various parts (leaves, stems and flowers) of A. aroma against 163 strains of antibiotic multi-resistant bacteria. The disc diffusion assay was performed to evaluate antibacterial activity of the A. aroma crude extracts, against several Gram-positive bacteria (E. faecalis, S. aureus, coagulase-negative stahylococci, S. pyogenes, S. agalactiae, S. aureus ATCC 29213, E. faecalis ATCC 29212) and Gram-negative bacteria (E. coli., K. pneumoniae, P. mirabilis, E. cloacae, S. marcescens, M morganii, A. baumannii, P. aeruginosa, S. maltophilia, E. coli ATCC 35218, P. aeruginosa ATCC 27853, E. coli ATCC 25922). All ethanolic extracts showed activity against gram-positive bacteria. Among all obtained extracts, only leaf and flower fluid extracts showed activity against Gram-negative bacteria. Based on this bioassay, leaf fluid extracts tended to be the most potent, followed by flower fluid extracts. Minimal inhibitory concentration (MIC) values of extracts and antibiotics were comparatively determined by agar and broth dilution methods. Both extracts were active against S. aureus, coagulase-negative stahylococci, E. faecalis and E. faecium and all tested Gram-negative bacteria with MIC values from 0.067 to 0.308 mg/ml. In this study the minimal bactericidal concentration (MBC) values were identical or twice as high than the corresponding MIC for leaf extracts and four or eight times higher than MIC values for flower extracts. This may indicate a bactericidal effect. Stored extracts have similar antibacterial activity as recently obtained extracts. The A. aroma extracts of leaves and flowers may be useful as antibacterial agents against Gram- negative and Gram-positive antibiotic multi-resistant microorganisms.  相似文献   

9.
The antibacterial activity of honey derived from Australian flora   总被引:1,自引:0,他引:1  
Irish J  Blair S  Carter DA 《PloS one》2011,6(3):e18229
Chronic wound infections and antibiotic resistance are driving interest in antimicrobial treatments that have generally been considered complementary, including antimicrobially active honey. Australia has unique native flora and produces honey with a wide range of different physicochemical properties. In this study we surveyed 477 honey samples, derived from native and exotic plants from various regions of Australia, for their antibacterial activity using an established screening protocol. A level of activity considered potentially therapeutically useful was found in 274 (57%) of the honey samples, with exceptional activity seen in samples derived from marri (Corymbia calophylla), jarrah (Eucalyptus marginata) and jellybush (Leptospermum polygalifolium). In most cases the antibacterial activity was attributable to hydrogen peroxide produced by the bee-derived enzyme glucose oxidase. Non-hydrogen peroxide activity was detected in 80 (16.8%) samples, and was most consistently seen in honey produced from Leptospermum spp. Testing over time found the hydrogen peroxide-dependent activity in honey decreased, in some cases by 100%, and this activity was more stable at 4 °C than at 25 °C. In contrast, the non-hydrogen peroxide activity of Leptospermum honey samples increased, and this was greatest in samples stored at 25 °C. The stability of non-peroxide activity from other honeys was more variable, suggesting this activity may have a different cause. We conclude that many Australian honeys have clinical potential, and that further studies into the composition and stability of their active constituents are warranted.  相似文献   

10.
The in vitro antibacterial and antifungal activities of the compounds synthesised from some 1,2,3,5-tetrahalogeno benzenes in presence of sodium piperidide and sodium pyrrolidide (2,6-dipiperidino-1,4-dihalogenobenzenes; 2,6-dipyrrolidino-1,4-dibromobenzene; 2,4,6-tripyrrolidino chlorobenzene; and 1,3-dipyrrolidino benzene) were investigated. The in vitro antimicrobial activities were screened against the standard strains: Staphylococcus aureus ATCC 25923 and Bacillus subtilis ATCC 6633 as Gram positive, Yersinia enterocolitica ATCC 1501, Escherichia coli ATCC 11230 and Klebsiella pneumoniae as Gram negative, and Candida albicans as yeast-like fungus. Compounds (3, 5, 6, 7) inhibited the growth of all the test strains at MIC values of 32-512 microg/ml. None of the four compounds (1, 2,4,8) studied showed antimicrobial activity against any of the test strains within the MIC range 0.25-512 micro/ml.  相似文献   

11.
Treatment of chronic wounds is becoming increasingly difficult due to antibiotic resistance. Complex natural products with antimicrobial activity, such as honey, are now under the spotlight as alternative treatments to antibiotics. Several studies have shown honey to have broad-spectrum antibacterial activity at concentrations present in honey dressings, and resistance to honey has not been attainable in the laboratory. However not all honeys are the same and few studies have used honey that is well defined both in geographic and chemical terms. Here we have used a range of concentrations of clover honey and a suite of manuka and kanuka honeys from known geographical locations, and for which the floral source and concentration of methylglyoxal and hydrogen peroxide potential were defined, to determine their effect on growth and cellular morphology of four bacteria: Bacillus subtilis, Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. While the general trend in effectiveness of growth inhibition was manuka>manuka-kanuka blend>kanuka>clover, the honeys had varying and diverse effects on the growth and cellular morphology of each bacterium, and each organism had a unique response profile to these honeys. P. aeruginosa showed a markedly different pattern of growth inhibition to the other three organisms when treated with sub-inhibitory concentrations of honey, being equally sensitive to all honeys, including clover, and the least sensitive to honey overall. While hydrogen peroxide potential contributed to the antibacterial activity of the manuka and kanuka honeys, it was never essential for complete growth inhibition. Cell morphology analysis also showed a varied and diverse set of responses to the honeys that included cell length changes, cell lysis, and alterations to DNA appearance. These changes are likely to reflect the different regulatory circuits of the organisms that are activated by the stress of honey treatment.  相似文献   

12.
Hydroquinone is a benzene-derived metabolite. To clarify whether the reactive oxygen species (ROS) are involved in hydroquinone-induced cytotoxicity, we constructed transformants of Escherichia coli (E. coli) strains that express mammalian catalase gene derived from catalase mutant mice (Cs(b), Cs(c)) and the wild-type (Cs(a)) using a catalase-deficient E. coli UM255 as a recipient. Specific catalase activities of these tester strains were in order of Cs(a) > Cs(c) > Cs(b) > UM255, and their susceptibility to hydrogen peroxide (H2O2) showed UM255 > Cs(b) > Cs(c) > Cs(a). We found that hydroquinone exposure reduced the survival of catalase-deficient E. coli mutants in a dose-dependent manner significantly, especially in the strains with lower catalase activities. Hydroquinone toxicity was also confirmed using zone of inhibition test, in which UM255 was the most susceptible, showing the largest zone of growth inhibition, followed by Cs(b), Cs(c) and Cs(a). Furthermore, we found that hydroquinone-induced cell damage was inhibited by the pretreatment of catalase, ascorbic acid, dimethyl sulfoxide (DMSO), and ethylenediaminetetraacetic acid (EDTA), and augmented by superoxide dismutase (both CuZnSOD and MnSOD). The present results suggest that H2O2 is probably involved in hydroquinone-induced cytotoxicity in catalase-deficient E. coli mutants and catalase plays an important role in protection of the cells against hydroquinone toxicity.  相似文献   

13.
The effect of alloxan has been studied on survival and activity of antioxidant and associated enzymes of E. coli wild strains and ones lacked of OxyR and SoxR proteins--regulators of antioxidant defense in E. coli. Bacteria treatment by 500 microM alloxan for 30 min caused an increase of catalase and peroxidase activity in wild and deltasoxRS strains. Catalase activity was not changed in response to alloxan exposure of oxyR deficient strain. It was proposed that under used condition the effect of alloxan on E. coli could be related to the growth of steadystate concentration of hydrogen peroxide. This supposition is also in agreement with the increase of soxRS regulon enzymes activities, because in our previous work it has been shown that H2O2-induced stress increases the activity of some soxRS regulon enzymes.  相似文献   

14.
The anti-bacterial property and preservative nature of honey has been studied by evaluating the role of hydrogen peroxide in these properties, against bacterial strains isolated and identified from pasteurized milk samples. The antibacterial property of honey examined by agar incorporation assay and turbidometry, indicated a concentration dependent inhibition of bacterial growth in all catalase negative strains in comparison with catalase positive strains, highlighting a probable role of hydrogen peroxide. Samples of commercial milk stored at 40C in presence of honey were shown to inhibit opportunistic bacterial growth better compared to samples stored without honey. Due to the bactericidal property of hydrogen peroxide and its preservative nature, honey which is chiefly a combination of various sugars and hydrogen peroxide, can be used a preservative of milk samples.  相似文献   

15.
The antibacterial activity of the methanolic extract and its fractions of aerial parts of Aniheinis tinctoria (Asteraceae) was investigated against representative gram-positive Staphylococcus aureus (ATCC 25923) and Enterococcus faecalis (ATCC 29212) and gram-negative strains Escherichia coli (ATCC 25922) and Pseudomonas aeruginosa (ATCC 27853). The activity was concentrated mainly in the dichloromethane (DCM) and hexane fractions of crude methanolic extract. The 5 mg of DCM extract per disk produced 15-16 mm of inhibition zone against S. aureus and P. aeruginosa, however, no activity was found against E. faecalis and E. coli. The hexane fraction showed activity against S. aureus, P. aeruginosa and E. faecalis. As DCM fraction showed the highest antibacterial activity in the disk diffusion assay, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of only this fraction was determined against S. aureus and P. aeruginosa. These values were found to be in the range of 1.25 to 10 mg/ml.  相似文献   

16.
本研究探究了羟基酪醇对大肠杆菌、金黄色葡萄球菌、铜绿假单胞杆菌和枯草芽孢杆菌等四种供试菌的抑菌活性及抑菌稳定性。采用试管半倍稀释法确定MIC和MBC,并探讨羟基酪醇对供试菌的生长和细胞膜完整性的影响以及在不同介质下的抑菌稳定性。结果表明,羟基酪醇对大肠杆菌、金黄色葡萄球菌、铜绿假单胞杆菌和枯草芽孢杆菌的MIC分别为0.625、0.625、1.250、2.500 mg/mL,MBC分别为1.250、1.250、2.500、5.000 mg/mL。与对照组相比,四种供试菌核酸和可溶性蛋白泄漏显著,细胞膜的完整性被破坏。在不同NaCl浓度下,羟基酪醇对枯草芽孢杆菌的抑菌活性稳定;在1.0%和2.0%NaCl浓度下,羟基酪醇对大肠杆菌和铜绿假单胞杆菌的抑菌活性稳定;在2.0%NaCl介质下低浓度的羟基酪醇对金黄色葡萄球菌的抑菌活性稳定,在0.5%、1.5%和2.0%NaCl介质下高浓度的羟基酪醇对金黄色葡萄球菌的抑菌活性稳定。在蔗糖介质中,羟基酪醇对四种供试菌的抑菌活性均不稳定。因此,羟基酪醇可以作为一种新型的防腐剂。  相似文献   

17.
The effect of hydrogen peroxide on the activity of soxRS and oxyR regulon enzymes in different strains of Escherichia coli has been studied. Treatment of bacteria with 20 μM H2O2 caused an increase in catalase and peroxidase activities (oxyR regulon) in all strains investigated. It is shown for the first time that oxidative stress induced by hydrogen peroxide causes in some E. coli strains a small increase in activity of superoxide dismutase and glucose-6-phosphate dehydrogenase (soxRS regulon). This effect is cancelled by chloramphenicol, an inhibitor of protein synthesis in prokaryotes. The increase in soxRS regulon enzyme activities was not found in the strain lacking the soxR gene. These results provide evidence for the involvement of the soxRS regulon in the adaptive response of E. coli to oxidative stress induced by hydrogen peroxide. __________ Translated from Biokhimiya, Vol. 70, No. 11, 2005, pp. 1506–1513. Original Russian Text Copyright ? 2005 by Semchyshyn, Bagnyukova, Lushchak.  相似文献   

18.
红谷霉素是链霉菌702发酵后所产的一种生物活性物质,具有较强抗细菌活性。研究表明,红谷霉素对大肠杆菌的最低抑菌浓度为40mg/L,对枯草芽胞杆菌的最低抑菌浓度为0.08mg/L。红谷霉素在微生物生长迟滞期添加比在其它生长阶段添加抑菌效果更好,红谷霉素对热和紫外比较稳定。通过与其他防腐剂的抑菌效果比较表明,红谷霉素对细菌的抑菌效果优于比较的防腐剂。  相似文献   

19.
In an attempt to isolate bioactive constituents, ethyl acetate cone extract of Metasequoia glyptostroboides was subjected to a column chromatographic analysis that resulted in isolation of an abietane-type diterpenoid, taxodone. Its structure was elucidated by spectroscopic means. Further, taxodone showed potential antibacterial effect as diameters of zones of inhibition against foodborne pathogenic bacteria, such as Listeria monocytogenes ATCC 19166, Salmonella typhimurium KCTC 2515, S. enteritidis KCTC 2021, Escherichia coli ATCC 8739, E. coli O157:H7 ATCC 43888, Enterobacter aerogenes KCTC 2190, Staphylococcus aureus ATCC 6538 and S. aureus KCTC 1916, were found in the range of 9.4 to 14.2 mm. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of taxodone against the employed bacterial pathogens were found in the range of 250 to 1000 and 250 to less than 2000 microg/ml, respectively. Also the compound had a strong antibacterial effect on the viable counts of the tested bacteria. These findings indicate that the bioactive compound taxodone present in M. glyptostroboides could be used as an antibacterial agent in food industry to inhibit the growth of certain important foodborne pathogens.  相似文献   

20.
The antimicrobial activity of manuka honey has been well documented (Molan, 1992a,b,c, 1997) [Molan, P.C., 1992. The antibacterial activity of honey. 1: the nature of the antibacterial activity. Bee World 73 (1) 5-28; Molan, P.C., 1992. The antibacterial activity of honey. 2: variation in the potency of the antibacterial activity. Bee World 73 (2) 59-76; Molan, P.C., 1992. Medicinal uses for honey. Beekeepers Quarterly 26; Molan, P.C., 1997. Finding New Zealand honeys with outstanding antibacterial and antifungal activity. New Zealand Beekeeper 4 (10) 20-26]. The current bioassays for determining this antimicrobial effect employ a well diffusion (Ahn and Stiles, 1990) [Ahn, C., Stiles, M.E., 1990. Antibacterial activity of lactic acid bacteria isolated from vacuum-packed meats. Journal of Applied Bacteriology 69, 302-310], (Weston et al., 1999) [Weston, R.J., Mitchell, K.R., Allen, K.L., 1999. Antibacterial phenolic components of New Zealand manuka honey. J. Food Chem. 64, 295-301] or disc diffusion (Taormina et al., 2001) [Taormina, Peter J., Niemira, Brendan A., Beuchat, Larry R., 2001. Inhibitory activity of honey against food borne pathogens as influenced by the presence of hydrogen peroxide and level of antioxidant power. Int. J. Food Microbiol. 69, 217-225] assay using zones of inhibition as indicators of bacterial susceptibility. The development of a 24-h spectrophotometric assay employing 96-well microtiter plates, that is more sensitive and more amenable to statistical analysis than the assays currently employed, was undertaken. This simple and rapid assay permits extensive kinetic studies even in the presence of low honey concentrations, and is capable of detecting inhibitory levels below those recorded for well or disc diffusion assays. In this paper, we compare the assay to both well and disc diffusion assays. The results we obtained for the spectrophotometric method MIC values show that this method has greater sensitivity than the standard well and disc diffusion assays. In addition, inter- and intra-assay variance for this method was investigated, demonstrating the methods reproducibility and repeatability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号