首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 15 毫秒
1.
1. The relative growth rate of saplings of 12 species from an oligotrophic lowland rain forest were measured in treefall gaps and understorey. Mean relative height growth ( R H) within treefall gaps was found to be slowest for tall-tree species with branched saplings, intermediate for subcanopy trees and fastest for tall-tree species with unbranched saplings. Most species had similar R H within the understorey. R H values were not related to leaf mass per unit area (LMA) or foliar N concentrations.
2. Allometric relationships between the total leaf area (TLA) and height were dependent upon light conditions; in general saplings of a given height had a greater TLA in treefall gaps than in understorey. The species with the largest estimated TLA values in gaps tended to have the greatest R H values in gaps; no such trend emerged in the understorey. The values of the allometric coefficients were not related to foliar properties.
3. The relationship between stem diameter and height was only weakly dependent on light conditions and the relationship between the growth rates in these dimensions was also weak. The lack of plasticity may reflect the fact that the height–diameter relationship has little bearing on a sapling's tolerance of shade.
4. One way of accommodating the dependence of allometry upon irradiance is to add R H as a covariate. We derive a relationship between growth rates from this resource-dependent allometric equation and show that it reasonably describes measurements taken in the caatinga forest.  相似文献   

2.
马慧燕  伍乾辉  付彦  杨宗德  何禾 《生态学报》2023,43(3):1073-1089
BVOCs(Biogenic Volatile Organic Compounds)是植物向大气释放的一类重要气态化合物,能参与大气化学过程和陆地生态系统碳素循环。分析环境因子对BVOCs排放的影响,对科学认识未来气候变化具有重要意义。氮素作为植物生长、发育所需的大量营养元素之一,其沉降增加是当前全球气候变化的主要驱动因素之一,但学者对BVOCs如何应对氮沉降增加知之甚少。因此以海南岛热带雨林树种:木荷(Schima superba)、厚壳桂(Cryptocarya chinensis)和线枝蒲桃(Syzygium araiocladum)为研究对象,通过温室盆栽实验模拟氮沉降对3个树种BVOCs释放的短期效应。主要结论如下:(1)自然状态下,从木荷、厚壳桂和线枝蒲桃的枝叶中鉴定出14、34和24种挥发性有机化合物,包括异戊二烯、单萜烯、倍半萜烯和其他挥发性有机化合物(烷烃、羰基、醛、醇、酯、醚和酸),此外三个阔叶树种释放BVOCs的速率呈厚壳桂>木荷>线枝蒲桃;(2)外源施氮均促进了三种植物幼苗VOCs释放,其中总VOCs释放速率和成分数量均随施氮浓度的升高而增加,且叶面...  相似文献   

3.
4.

Background and Aims

Isoprene is the most important volatile organic compound emitted by land plants in terms of abundance and environmental effects. Controls on isoprene emission rates include light, temperature, water supply and CO2 concentration. A need to quantify these controls has long been recognized. There are already models that give realistic results, but they are complex, highly empirical and require separate responses to different drivers. This study sets out to find a simpler, unifying principle.

Methods

A simple model is presented based on the idea of balancing demands for reducing power (derived from photosynthetic electron transport) in primary metabolism versus the secondary pathway that leads to the synthesis of isoprene. This model''s ability to account for key features in a variety of experimental data sets is assessed.

Key results

The model simultaneously predicts the fundamental responses observed in short-term experiments, namely: (1) the decoupling between carbon assimilation and isoprene emission; (2) a continued increase in isoprene emission with photosynthetically active radiation (PAR) at high PAR, after carbon assimilation has saturated; (3) a maximum of isoprene emission at low internal CO2 concentration (ci) and an asymptotic decline thereafter with increasing ci; (4) maintenance of high isoprene emissions when carbon assimilation is restricted by drought; and (5) a temperature optimum higher than that of photosynthesis, but lower than that of isoprene synthase activity.

Conclusions

A simple model was used to test the hypothesis that reducing power available to the synthesis pathway for isoprene varies according to the extent to which the needs of carbon assimilation are satisfied. Despite its simplicity the model explains much in terms of the observed response of isoprene to external drivers as well as the observed decoupling between carbon assimilation and isoprene emission. The concept has the potential to improve global-scale modelling of vegetation isoprene emission.  相似文献   

5.
热带雨林恢复演替中优势树种黄桐气体交换对环境的响应   总被引:9,自引:2,他引:9  
用Li-6400便携式光合测定系统(Li-CorInc.,USA)对海南岛热带山地雨林恢复演替先锋建群种黄桐(EndospermumchinenseBenth.)叶片的气体交换特征及其对环境的响应进行了测定。结果表明:(1)净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(E)日变化均为双峰型曲线。出现"午睡"原因是光合有效辐射(PPFD)不足和Gs的关闭,不是强光抑制和水分胁迫。(2)叶片Pn大小与Gs、E、PPFD、气温(Ta)和叶面温度(Tl)等为密切的正比关系,与胞间CO2浓度(Ci)、大气CO2浓度(Ca)和大气相对湿度(RH)等相关度极低甚至是负相关,光饱和点(LSP)较高,表现出阳性树种特性。(3)短期高Ca作用会引起Gs、E的降低和Pn增高。Ca倍增,则Pn提高了70%,E降低4.43%,水分利用效率(WUE)提高78%。(4)叶片Pn日平均值和日最大值分别达6.40±0.17、11.60μmolCO2/(m2·s),表现出速生性。  相似文献   

6.
Architecture and leaf display were compared in saplings of six rain forest tree species differing in shade tolerance. Saplings were selected along the whole light range encountered in a forest environment. Species differed largely in realized height and crown expansion per unit support biomass, but this could not be related to differences in shade tolerance. The results demonstrate that there exist various solutions to an effective expansion of plant height and crown area. It is argued that choice of the study species and the ontogenetic trajectory regarded determine to a large extent the outcome of interspecific comparisons. No evidence was found that pioneers were characterized by a multilayered and shade tolerants by a monolayered leaf distribution. Yet, sun plants had a similar crown area, a deeper crown, and a higher leaf area index compared to shade plants and their leaves were more evenly distributed along the stem. This suggests that differences in leaf layering are found between plants growing in different light environments, rather than between species differing in shade tolerance.  相似文献   

7.
To gain insight into variations in waterlogging responsiveness, net assimilation rate, stomatal conductance, emissions of isoprene and marker compounds of anoxic metabolism ethanol and acetaldehyde, and stress marker compounds nitric oxide (NO), volatile products of lipoxygenase (LOX) pathway and methanol were studied in seedlings of temperate deciduous tree species Alnus glutinosa, Populus tremula and Quercus rubra (from highest to lowest waterlogging tolerance) throughout sustained root zone waterlogging of up to three weeks. In all species, waterlogging initially resulted in reductions in net assimilation and stomatal conductance and enhanced emissions of ethanol, acetaldehyde, NO, LOX products and methanol, followed by full or partial recovery depending on process and species. Strong negative correlations between gs and internal NO concentration and NO flux, valid within and across species, were observed throughout the experiment. Isoprene emission capacity was not related to waterlogging tolerance. Less waterlogging tolerant species had greater reduction and smaller acclimation capacity in foliage physiological potentials, and larger emission bursts of volatile stress marker compounds. These data collectively provide encouraging evidence that emissions of volatile organics and NO can be used as quantitative measures of stress tolerance and acclimation kinetics in temperate trees.  相似文献   

8.
Changes of the volatile organic compounds (VOC) emission capacity and composition of different developmental stages of the tropical tree species Hymenaea courbaril were investigated under field conditions at a remote Amazonian rainforest site. The basal emission capacity of isoprene changed considerably over the course of leaf development, from young to mature and to senescent leaves, ultimately spanning a wide range of observed isoprene basal emission capacities from 0.7 to 111.5 µg C g?1 h?1 during the course of the year. By adjusting the standard emission factors for individual days, the diel courses of instantaneous isoprene emission rates could nevertheless adequately be modelled by a current isoprene algorithm. The results demonstrate the inadequacy of using one single standard emission factor to represent the VOC emission capacity of tropical vegetation for an entire seasonal cycle. A strong linear correlation between the isoprene emission capacity and the gross photosynthetic capacity (GPmax) covering all developmental stages and seasons was observed. The present results provide evidence that leaf photosynthetic properties may confer a valuable basis to model the seasonal variation of isoprenoid emission capacity; especially in tropical regions where the environmental conditions vary less than in temperate regions. In addition to induction and variability of isoprene emission during early leaf development, considerable amounts of monoterpenes were emitted in a light‐dependent manner exclusively in the period between bud break and leaf maturity. The fundamental change in emission composition during this stage as a consequence of resource availability (supply side control) or as a plant's response to the higher defence demand of young emerging leaves (demand‐side control) is discussed. The finding of a temporary emergence of monoterpene emission may be of general interest in understanding both the ecological functions of isoprenoid production and the regulatory processes involved.  相似文献   

9.
A life‐history trade‐off between low mortality in the dark and rapid growth in the light is one of the most widely accepted mechanisms underlying plant ecological strategies in tropical forests. Differences in plant functional traits are thought to underlie these distinct ecological strategies; however, very few studies have shown relationships between functional traits and demographic rates within a functional group. We present 8 years of growth and mortality data from saplings of 15 species of Dipterocarpaceae planted into logged‐over forest in Malaysian Borneo, and the relationships between these demographic rates and four key functional traits: wood density, specific leaf area (SLA), seed mass, and leaf C:N ratio. Species‐specific differences in growth rates were separated from seedling size effects by fitting nonlinear mixed‐effects models, to repeated measurements taken on individuals at multiple time points. Mortality data were analyzed using binary logistic regressions in a mixed‐effects models framework. Growth increased and mortality decreased with increasing light availability. Species differed in both their growth and mortality rates, yet there was little evidence for a statistical interaction between species and light for either response. There was a positive relationship between growth rate and the predicted probability of mortality regardless of light environment, suggesting that this relationship may be driven by a general trade‐off between traits that maximize growth and traits that minimize mortality, rather than through differential species responses to light. Our results indicate that wood density is an important trait that indicates both the ability of species to grow and resistance to mortality, but no other trait was correlated with either growth or mortality. Therefore, the growth mortality trade‐off among species of dipterocarp appears to be general in being independent of species crossovers in performance in different light environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号