共查询到20条相似文献,搜索用时 10 毫秒
1.
Atassi F Brassart D Grob P Graf F Servin AL 《FEMS immunology and medical microbiology》2006,48(3):424-432
The purpose of this study was to investigate how human vaginal isolates of Lactobacillus acidophilus, Lactobacillus jensenii, Lactobacillus gasseri and Lactobacillus crispatus inhibit the vaginosis-associated pathogens Gardnerella vaginalis and Prevotella bivia. Results show that all the strains in coculture condition reduced the viability of G. vaginalis and P. bivia, but with differing degrees of efficacy. The treatment of G. vaginalis- and P. bivia-infected cultured human cervix epithelial HeLa cells with L. gasseri strain KS120.1 culture or cell-free culture supernatant (CFCS) results in the killing of the pathogens that are adhering to the cells. The mechanism of the killing activity is not attributable to low pH and the presence of lactic acid alone, but rather to the presence of hydrogen peroxide and proteolytic enzyme-resistant compound(s) present in the CFCSs. In addition, coculture of G. vaginalis or P. bivia with L. gasseri KS120.1 culture or KS120.1 bacteria results in inhibition of the adhesion of the pathogens onto HeLa cells. 相似文献
2.
The purpose of this study was to investigate the antibacterial activities of Lactobacillus jensenii KS119.1 and KS121.1, and Lactobacillus gasserii KS120.1 and KS124.3 strains isolated from the vaginal microflora of healthy women, against uropathogenic, diffusely adhering Afa/Dr Escherichia coli (Afa/Dr DAEC) strains IH11128 and 7372 involved in recurrent cystitis. We observed that some of the Lactobacillus isolates inhibited the growth and decreased the viability of E. coli IH11128 and 7372. In addition, we observed that adhering Lactobacillus strains inhibited adhesion of E. coli IH11128 onto HeLa cells, and inhibited internalization of E. coli IH11128 within HeLa cells. 相似文献
3.
AIMS: To clone and analyse seven putative promoter fragments (pepC, pepN, pepX, pepO, pepE, pepO2, hsp17) from Lactobacillus helveticus CNRZ32 for their expression in Lact. helveticus CNRZ32, Lact. casei ATCC334 and Lactococcus lactis MG1363. METHODS AND RESULTS: Promoter fragments were fused to the promoter-less beta-glucuronidase (gusA) gene on pNZ272(RBS-) (ATG-). The resulting constructs were evaluated for their ability to drive the expression of active GusA with 0.5 mmol l(-1) 5-bromo-4-chloro-3-indolyl-beta-D-glucuronide. All promoters except P(pepN)::gusA were active in the examined strains. Northern hybridization was performed to examine the promoter strength. Sequence analysis of these promoters identified well conserved putative ribosomal binding and putative -10 hexamers sites. CONCLUSIONS: Seven promoter fragments from Lact. helveticus CNRZ32 were recognized in the lactic acid bacteria, Lact. casei ATCC334 and L. lactis MG1363, as well as in Escherichia coli. P(pepN)::gusA could not be maintained in the strains examined because of toxicity associated with heterologous protein over-expression driven by P(pepN). SIGNIFICANCE AND IMPACT OF THE STUDY: This study revealed that desirable levels of heterologous food-grade protein production in GRAS organisms can be obtained with the application of natural promoter fragments from closely related organisms. 相似文献
4.
5.
Jin-Hyung Lee Yong-Guy Kim Chaitany Jayprakash Raorane Shi Yong Ryu Jae-Jin Shim 《Biofouling》2013,29(7):758-767
AbstractUropathogenic Escherichia coli (UPEC) is the primary causative agent of urinary tract infections, which are one of the most common infectious disease types in humans. UPEC infections involve bacterial cell adhesion to bladder epithelial cells, and UPEC can also form biofilms on indwelling catheters that are often tolerant to common antibiotics. In this study, the anti-biofilm activities of t-stilbene, stilbestrol, t-resveratrol, oxyresveratrol, ε-viniferin, suffruticosol A, and vitisin A were investigated against UPEC. t-Resveratrol, oxyresveratrol, and ε-viniferin, suffruticosol A, and vitisin A significantly inhibited UPEC biofilm formation at subinhibitory concentrations (10–50?μg ml?1). These findings were supported by observations that t-resveratrol and oxyresveratrol reduced fimbriae production and the swarming motility in UPEC. Furthermore, t-resveratrol and oxyresveratrol markedly diminished the hemagglutinating ability of UPEC, and enhanced UPEC killing by human whole blood. The findings show that t-resveratrol, oxyresveratrol, and resveratrol oligomers warrant further attention as antivirulence strategies against persistent UPEC infections. 相似文献
6.
AIMS: The aims of this study were to investigate in vitro the effects of Lactobacillus isolates from a chicken on adhesion of pathogenic Salmonella and Escherichia coli to chicken intestinal mucus obtained from different intestinal regions. METHODS AND RESULTS: Bacteria were labelled by using methyl-1,2-[(3)H]-thymidine. The bacterial adhesion was assessed by measuring the radioactivity of bacteria adhered to the mucus. The results showed that the abilities of Lactobacillus spp. to bind to the same intestinal mucus were higher than those of pathogenic Salmonella and E. coli. Pretreatment of intestinal mucus with Lactobacillus fermentum and Lactobacillus acidophilus, alone or in combination, reduced the adhesion of the tested pathogens, but the reductive extent of pathogenic adhesion by Lactobacillus spp. in combination was relatively high. CONCLUSIONS: The tested bacteria had different adhesions to mucus glycoproteins isolated from different intestinal regions of chicken. Lactobacillus acidophilus and Lact. fermentum in combination revealed a better ability to inhibit attachments of Salmonella and E. coli to chicken intestinal mucus than Lactobacillus sp. alone. SIGNIFICANCE AND IMPACT OF THE STUDY: A mixture of intestinal Lactobacillus spp. from a chicken may play a protective role in excluding pathogenic Salmonella and E. coli from the intestine of chicken. 相似文献
7.
A. Zihler G. Le Blay T. de Wouters C. Lacroix C.P. Braegger A. Lehner P. Tischler T. Rattei H. Hächler R. Stephan 《Letters in applied microbiology》2009,49(1):31-38
Aims: To compare in vitro the inhibitory activity of four bacteriocin-producing Escherichia coli to a well-characterized panel of Salmonella strains, recently isolated from clinical cases in Switzerland.
Methods and Results: A panel of 68 nontyphoidal Salmonella strains was characterized by pulsed-field gel electrophoresis analysis and susceptibility to antibiotics. The majority of tested strains were genetically different, with 40% resistant to at least one antibiotic. E. coli Mcc24 showed highest in vitro activity against Salmonella (100%, microcin 24), followed by E. coli L1000 (94%, microcin B17), E. coli 53 (49%, colicin H) and E. coli 52 (21%, colicin G) as revealed using a cross-streak activity assay.
Conclusions: Escherichia coli Mcc24, a genetically modified organism producing microcin 24, and E. coli L1000, a natural strain isolated from human faeces carrying the mcb -operon for microcin B17-production, were the most effective strains in inhibiting in vitro both antibiotic resistant and sensitive Salmonella isolates.
Significance and Impact of the Study: Due to an increasing prevalence of antibiotic resistant Salmonella strains, alternative strategies to fight these foodborne pathogens are needed. E. coli L1000 appears to be a promising candidate in view of developing biotechnological alternatives to antibiotics against Salmonella infections. 相似文献
Methods and Results: A panel of 68 nontyphoidal Salmonella strains was characterized by pulsed-field gel electrophoresis analysis and susceptibility to antibiotics. The majority of tested strains were genetically different, with 40% resistant to at least one antibiotic. E. coli Mcc24 showed highest in vitro activity against Salmonella (100%, microcin 24), followed by E. coli L1000 (94%, microcin B17), E. coli 53 (49%, colicin H) and E. coli 52 (21%, colicin G) as revealed using a cross-streak activity assay.
Conclusions: Escherichia coli Mcc24, a genetically modified organism producing microcin 24, and E. coli L1000, a natural strain isolated from human faeces carrying the mcb -operon for microcin B17-production, were the most effective strains in inhibiting in vitro both antibiotic resistant and sensitive Salmonella isolates.
Significance and Impact of the Study: Due to an increasing prevalence of antibiotic resistant Salmonella strains, alternative strategies to fight these foodborne pathogens are needed. E. coli L1000 appears to be a promising candidate in view of developing biotechnological alternatives to antibiotics against Salmonella infections. 相似文献
8.
Nardi RM Santoro MM Oliveira JS Pimenta AM Ferraz VP Benchetrit LC Nicoli JR 《Journal of applied microbiology》2005,99(3):649-656
AIMS: The aim of this work was to purify and characterize antibacterial compounds produced by Lactobacillus murinus strain L1. METHODS AND RESULTS: Antagonistic activity was observed in a deferred agar-spot assay against spoilage and pathogenic bacteria, but not against lactobacilli. The inhibitory activity occurred between pH 3.0 and 5.0, and was heat stable. The active compounds were purified by gel filtration chromatography and two peaks of antibacterial activity were observed using Bacillus cereus ATCC 11778 and Shigella sonnei ATCC 11060 as indicator strains. Two active low molecular weight compounds were responsible for this phenomenon and UV spectroscopy, gas chromatography and mass spectrometry were used to characterize them. One of them is lactic acid, while the other is a mono-substituted aromatic ring apparently constituted by group residues of m/z 192 linked in tandem to phenylalanine. CONCLUSIONS: Lactobacillus murinus produces at least two low molecular weight compounds active against B. cereus and Sh. sonnei. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first purification of a new broad-spectrum antibacterial compound from Lact. murinus which inhibits various pathogenic and food spoilage bacteria without acting on other lactobacilli. Using it as a biotechnological control agent of bacterial spoilage may be a promising possibility for the food industry. 相似文献
9.
10.
Fayol-Messaoudi D Coconnier-Polter MH Moal VL Atassi F Berger CN Servin AL 《Journal of applied microbiology》2007,103(3):657-665
AIMS: The purpose of this study was to investigate the antibacterial activity of the Xynotyri cheese isolate Lactobacillus plantarum ACA-DC287 using a set of in vitro and in vivo assays. METHODS AND RESULTS: The co-culture of L. plantarum strain ACA-DC287 and Salmonella enterica serovar Typhimurium strain SL1344 results in the killing of the pathogen. The killing activity was produced mainly by non-lactic acid molecule(s) that were present in the cell-free culture supernatant of the L. plantarum strain ACA-DC287. The culture of the L. plantarum strain ACA-DC287 inhibited the penetration of S. typhimurium SL1344 into cultured human enterocyte-like Caco-2/TC7 cells. In conventional mice infected with S. typhimurium SL1344, the intake of L. plantarum strain ACA-DC287 results in a decrease in the levels of Salmonella associated with intestinal tissues or those present in the intestinal contents. In germ-free mice, the L. plantarum strain ACA-DC287 colonized the gastrointestinal tract. CONCLUSIONS: The L. plantarum strain ACA-DC287 strain exerts anti-Salmonella activity similar that of the established probiotic strains Lactobacillus rhamnosus GG, Lactobacillus casei Shirota YIT9029 and Lactobacillus johnsonii La1. SIGNIFICANCE AND IMPACT OF THE STUDY: The observation that a selected cheese Lactobacillus strain exerted antibacterial activity that was similar to those of probiotic Lactobacillus strains, is of interest for the use of this strain as an adjunct strain for the production of health-giving cheeses. 相似文献
11.
植物乳杆菌(Lactobacillus plantarum)是乳酸杆菌中的一种,常存在于发酵的蔬菜和果汁中。植物乳杆菌作为人体肠道的益生菌群,具有维持肠道菌群平衡、提高机体免疫力和促进营养物质吸收等多种作用。研究从市售腌渍蔬菜中分离筛选获得一株植物乳杆菌,以9种菌作为指示菌,采用牛津杯琼脂扩散法检测筛选菌株的抑菌谱大小。结果表明,该菌株能较强的抑制大肠杆菌、柠檬色葡萄球菌、藤黄微球菌和枯草芽孢杆菌等指示菌。此外,研究了菌株对温度的稳定性,p H值的耐受性及其酶的敏感性等生物学特性,结果显示该株植物乳杆菌菌株具有良好的热稳定性,酸碱稳定性,并且对3种蛋白酶具有很好的敏感性。这为今后深入研究与开发植物乳杆菌奠定了基础。 相似文献
12.
Seyyed Khalil Shokouhi Mostafavi Shahin Najar-Peerayeh Ashraf Mohabbati Mobarez Mehdi Kardoust Parizi 《Journal of cellular physiology》2019,234(10):18272-18282
Pathogenic and drug-resistant strains of Escherichia coli (E. coli) O25b-B2-ST131, O15:H1-D-ST393, and CGA (clonal group A) clonal groups have spread worldwide. This study aimed at determining E. coli epidemic clonal groups, their virulence factors, biofilm formation, neutrophils apoptosis, and antimicrobial resistance pattern of uropathogenic E. coli. A total of 95 CTX-M-1-producing E. coli clinical isolates were enrolled. E. coli O25b-B2-ST131, CGA, and O15:K52:H1 were identified by serotyping and phylogrouping and allele-specific polymerase chain reaction-based assay. Antibiotic susceptibility, biofilm formation, hemolysis, and human serum bactericidal assay were performed. Neutrophil apoptosis was assayed by flow cytometry. Nine E. coli clonal groups including six O25b-B2-ST131 strains, two CGA, and one O15:K52:H1-D-ST393 strains were detected. One O25b-B2-ST131 isolate was a strong biofilm-producer. Three ST131 isolates had type I fimbriae. Furthermore, all the CGA and O15:K52:H1 and three of ST131 isolates harbored the P fimbriae. The virulence genes ompT, fimH, and traT were detected among all the clonal groups. The apoptosis was induced by O25b-B2-ST131, CGA, and O15:K52:H1 E. coli. There was no significant difference regarding apoptosis induction among clonal groups. Furthermore, the presence of the cdt, usp, and vat genes was significantly associated with the apoptosis of neutrophils by O25b-B2-ST131, CGA, and O15:K52:H1-D-ST393 clonal groups. 相似文献
13.
Phylogenetic group distributions,virulence factors and antimicrobial resistance properties of uropathogenic Escherichia coli strains isolated from patients with urinary tract infections in South Korea 下载免费PDF全文
Y.‐J. Son D.H. Kim H.S. Park J.M. Kim S.H. Koo M.H. Oh H.‐J. Kim C.H. Choi 《Letters in applied microbiology》2016,62(1):84-90
14.
Mode of antimicrobial action of vanillin against Escherichia coli, Lactobacillus plantarum and Listeria innocua 总被引:1,自引:0,他引:1
Fitzgerald DJ Stratford M Gasson MJ Ueckert J Bos A Narbad A 《Journal of applied microbiology》2004,97(1):104-113
AIMS: To investigate the mode of action of vanillin, the principle flavour component of vanilla, with regard to its antimicrobial activity against Escherichia coli, Lactobacillus plantarum and Listeria innocua. METHODS AND RESULTS: In laboratory media, MICs of 15, 75 and 35 mmol l(-1) vanillin were established for E. coli, Lact. plantarum and L. innocua, respectively. The observed inhibition was found to be bacteriostatic. Exposure to 10-40 mmol l(-1) vanillin inhibited respiration of E. coli and L. innocua. Addition of 50-70 mmol l(-1) vanillin to bacterial cell suspensions of the three organisms led to an increase in the uptake of the nucleic acid stain propidium iodide; however a significant proportion of cells still remained unstained indicating their cytoplasmic membranes were largely intact. Exposure to 50 mmol l(-1) vanillin completely dissipated potassium ion gradients in cultures of Lact. plantarum within 40 min, while partial potassium gradients remained in cultures of E. coli and L. innocua. Furthermore, the addition of 100 mmol l(-1) vanillin to cultures of Lact. plantarum resulted in the loss of pH homeostasis. However, intracellular ATP pools were largely unaffected in E. coli and L. innocua cultures upon exposure to 50 mmol l(-1) vanillin, while ATP production was stimulated in Lact. plantarum cultures. In contrast to the more potent activity of carvacrol, a well studied phenolic flavour compound, the extent of membrane damage caused by vanillin is less severe. CONCLUSIONS: Vanillin is primarily a membrane-active compound, resulting in the dissipation of ion gradients and the inhibition of respiration, the extent to which is species-specific. These effects initially do not halt the production of ATP. SIGNIFICANCE AND IMPACT OF THE STUDY: Understanding the mode of action of natural antimicrobials may facilitate their application as natural food preservatives, particularly for their potential use in preservation systems employing multiple hurdles. 相似文献
15.
16.
Antibacterial activities of as-synthesized nanoparticles have gained attention in past few years due to rapid phylogenesis of pathogens developing multi-drug resistance (MDR). Antibacterial activity of copper nanoparticles (CuNPs) on surrogate pathogenic Gram-negative bacteria Escherichia coli (MTCC no. 739) and Proteus vulgaris (MTCC no. 426) was evaluated under culture conditions. Three sets of colloidal CuNPs were synthesized by chemical reduction method with per batch yield of 0·2, 0·3 and 0·4 g. As-synthesized CuNPs possess identical plasmonic properties and have similar hydrodynamic particle sizes (11–14 nm). Antibacterial activities of CuNPs were evaluated by minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) tests, cytoplasmic leakage and reactive oxygen species (ROS) assays. MIC and MBC tests revealed dose dependence bactericidal action. Growth curves of E. coli show faster growth inhibition along with higher cytoplasmic leakage than that of P. vulgaris. This might be because of increased membrane permeability of E. coli. CuNP–microorganism interaction induces oxidative stress generated by ROS. Leakage of cytoplasmic components, loss of membrane permeability and ROS generation are the primary causes of CuNP-induced bacterial cell death. As-synthesized CuNPs exhibiting promising antibacterial activities and could be a promising candidate for novel antibacterial agents. 相似文献
17.
Aims: To investigate the in vitro antibacterial activity and antifungal mode of action of flocculosin, a cellobiose lipid produced by Pseudozyma flocculosa .
Methods and Results: When tested against clinical bacterial isolates, the compound was particularly active against Gram-positive bacteria and its effect was not mitigated against isolates known as resistant to other antibiotics. The antifungal activity of flocculosin was found to be rapid and concentration-dependent. At lethal concentrations against Candida albicans , flocculosin caused a rapid leakage of intracellular potassium and inhibited acidification of the medium by plasma membrane ATPases suggesting a physical rather than a biochemical effect. TEM observations of cells exposed 6 h to flocculosin revealed disrupted membranes and disorganized mitochondria.
Conclusions: Data obtained in this study confirm that flocculosin acts by disrupting the membrane surface of sensitive micro-organisms.
Significance and Impact of the Study: The elucidation of an antifungal mode of action of flocculosin can be exploited in furthering its antimicrobial potential against fungi and bacteria whose cell membranes are particularly sensitive to the action of the molecule. 相似文献
Methods and Results: When tested against clinical bacterial isolates, the compound was particularly active against Gram-positive bacteria and its effect was not mitigated against isolates known as resistant to other antibiotics. The antifungal activity of flocculosin was found to be rapid and concentration-dependent. At lethal concentrations against Candida albicans , flocculosin caused a rapid leakage of intracellular potassium and inhibited acidification of the medium by plasma membrane ATPases suggesting a physical rather than a biochemical effect. TEM observations of cells exposed 6 h to flocculosin revealed disrupted membranes and disorganized mitochondria.
Conclusions: Data obtained in this study confirm that flocculosin acts by disrupting the membrane surface of sensitive micro-organisms.
Significance and Impact of the Study: The elucidation of an antifungal mode of action of flocculosin can be exploited in furthering its antimicrobial potential against fungi and bacteria whose cell membranes are particularly sensitive to the action of the molecule. 相似文献
18.
AIMS: The aim of this study was to investigate the influence of environmental and physiological factors on the susceptibility of Escherichia coli to the Curvularia haloperoxidase system. METHODS AND RESULTS: The Curvularia haloperoxidase system is a novel enzyme system that produces reactive oxygen species which have an antimicrobial effect. Escherichia coli MG1655 was exposed to the Curvularia haloperoxidase system under different temperatures and NaCl concentrations and after exposure to different stress factors. Temperature clearly affected enzymatic activity with increasing antibacterial effect at increasing temperature. The presence of NaCl interfered with the enzyme system and in the presence of 1% NaCl, no antibacterial effect could be observed at pH 7. Cells grown at pH 8.0 were in one experiment more resistant than cells grown at pH 6.5, whereas cells grown in the presence of 2% NaCl were more susceptible to the Curvularia haloperoxidase system. CONCLUSIONS: Environmental and physiological factors can affect the antibacterial activity of the Curvularia haloperoxidase system. SIGNIFICANCE AND IMPACT OF THE STUDY: The study demonstrates a systematic approach in assessing the effect of environmental and physiological factors on microbial susceptibility to biocides. Such information is crucial for prediction of application as well as potential side-effects. 相似文献
19.
20.
Aims: The aim of the current study is to develop encapsulation of essential oils for oral delivery to the small intestine of pigs in order to retain their antimicrobial activity. Methods and Results: Carvacrol was used as a model essential oil and successfully encapsulated in microcapsules made from Ca‐alginate hydrogel using an emulsion–extrusion technology with high encapsulation efficiency. This encapsulation method did not compromise the antimicrobial activity when tested against Escherichia coli K88 in a culture medium, as well as in a simulated gastrointestinal model. In the simulated gastrointestinal model, <20% of encapsulated carvacrol was released in the simulated gastric fluid; the rest was nearly completely released in the intestinal fluid after 6 h of incubation. Conclusions: Encapsulation in Ca‐alginate microcapsules could effectively reduce the early absorption of carvacrol in the upper gastrointestinal tract after oral administration, therefore, retains its potential antibacterial activity for the small intestine. Significance and Impact of the Study: The developed encapsulation method is expected to be suitable for encapsulation of other essential oils. The results from this study would increase the likelihood of success in the application of essential oils as antimicrobial agents for controlling enteric diseases in pigs. 相似文献