首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
A series of multivalent peptides, with the ability to simultaneously bind two separate PDZ domain proteins, has been designed, synthesized, and tested by isothermal titration calorimetry (ITC). The monomer sequences, linked with succinate, varied in length from five to nine residues. The thermodynamic binding parameters, in conjunction with results from mass spectrometry, indicate that a ternary complex is formed in which each peptide arm binds two equivalents of the third PDZ domain (PDZ3) of the neuronal protein PSD-95.  相似文献   

2.
Inspired by structure-based design and tailored for combinatorial preparation, a series of novel cyclic peptides has been developed to yield binding ligands for the third PDZ domain (PDZ3) of PSD-95. These side chain-side chain bridged peptides permit the systematic expansion or contraction of ring size, which is intended to maximize the conformational diversity of the ensemble. Isothermal titration calorimetry (ITC) was used to measure the dissociation constants (K(d)) and associated thermodynamic binding parameters.  相似文献   

3.
The structural features of the PDZ1 domain of the synapse-associated protein SAP90 have been characterized by NMR. A comparison with the structures of the PDZ2 and PDZ3 domains of SAP90 illustrates significant differences, which may account for the unique binding properties of these homologous domains. Within the postsynaptic density, SAP90 functions as a molecular scaffold with a number of the protein-protein interactions mediated through the PDZ1 domain. Here, using fluorescence anisotropy and NMR chemical shift analysis, we have characterized the association of PDZ1 to the C-terminal peptides of the GluR6 subunit of the kainate receptor, voltage-gated K(+) channel Kv1.4, and microtubule-associate protein CRIPT, all of which are known to associate with SAP90. The latter two, which possess the consensus sequence for binding to PDZ domains (T/S-X-V-oh), have low micromolar binding affinities (1.5-15 microm). The C terminus of GluR6, RLPGKETMA-oh, lacking the consensus sequence, binds to PDZ1 of SAP90 with an affinity of 160 microm. The NMR data illustrate that although all three peptides occupy the binding groove capped by the GLGF loop of PDZ1, specific differences are present, consistent with the variation in binding affinities.  相似文献   

4.
Jagged‐1, one of the five Notch ligands in man, is a membrane‐spanning protein made of a large extracellular region and a 125‐residue cytoplasmic tail bearing a C‐terminal PDZ recognition motif (1213RMEYIV1218). Binding of Jagged‐1 intracellular region to the PDZ domain of afadin, a protein located at cell–cell adherens junctions, couples Notch signaling with the adhesion system and the cytoskeleton. Using NMR chemical shift perturbation and surface plasmon resonance, we studied the interaction between the PDZ domain of afadin (AF6_PDZ) and a series of polypeptides comprising the PDZ‐binding motif. Chemical shift mapping of AF6_PDZ upon binding of ligands of different length (6, 24, and 133 residues) showed that the interaction is strictly local and involves only the binding groove in the PDZ. The recombinant protein corresponding to the entire intracellular region of Jagged‐1, J1_ic, is mainly disordered in solution, and chemical shift mapping of J1_ic in the presence of AF6_PDZ showed that binding is not coupled to folding. Binding studies on a series of 24‐residue peptides phosphorylated at different positions showed that phosphorylation of the tyrosine at position ‐2 of the PDZ‐binding motif decreases its affinity for AF6_PDZ, and may play a role in the modulation of this interaction. Finally, we show that the R1213Q mutation located in the PDZ‐binding motif and associated with extrahepatic biliary atresia increases the affinity for AF6_PDZ, suggesting that this syndrome may arise from an imbalance in the coupling of Notch signaling to the cytoskeleton. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
In this study, we evaluate the interaction between the postsynaptic scaffolding protein, PSD-95, and calmodulin. Surface plasmon resonance spectroscopy was used to characterize the binding of PSD-95 to calmodulin that had been immobilized on a sensor chip. Additionally, soluble calmodulin was found to inhibit the binding of PSD-95 to immobilized calmodulin. The HOOK region of PSD-95, which is located between the src homology 3 domain and the guanylate kinase-like domain, was determined to be involved in the binding of PSD-95 to calmodulin. We also found that C-terminal peptides from proteins such as CRIPT and the N-methyl-d-aspartate receptor NR2B subunit, which associate with the PDZ domain of PSD-95, enhanced the affinity of PSD-95 for calmodulin. The binding of ligands to the PDZ domain may change the conformation of PSD-95 and affect the interaction between PSD-95 and calmodulin.  相似文献   

6.
PDZ domains are protein interaction domains that are found in cytoplasmic proteins involved in signaling pathways and subcellular transport. Their roles in the control of cell growth, cell polarity, and cell adhesion in response to cell contact render this family of proteins targets during the development of cancer. Targeting of these network hubs by the oncoprotein E6 of “high-risk” human papillomaviruses (HPVs) serves to effect the efficient disruption of cellular processes. Using NMR, we have solved the three-dimensional solution structure of an extended construct of the second PDZ domain of MAGI-1 (MAGI-1 PDZ1) alone and bound to a peptide derived from the C-terminus of HPV16 E6, and we have characterized the changes in backbone dynamics and hydrogen bonding that occur upon binding. The binding event induces quenching of high-frequency motions in the C-terminal tail of the PDZ domain, which contacts the peptide upstream of the canonical X-[T/S]-X-[L/V] binding motif. Mutations designed in the C-terminal flanking region of the PDZ domain resulted in a significant decrease in binding affinity for E6 peptides. This detailed analysis supports the notion of a global response of the PDZ domain to the binding event, with effects propagated to distal sites, and reveals unexpected roles for the sequences flanking the canonical PDZ domain boundaries.  相似文献   

7.
Guanine nucleotide exchange factor proteins of the Tiam family are activators of the Rho GTPase Rac1 and critical for cell morphology, adhesion, migration, and polarity. These proteins are modular and contain a variety of interaction domains, including a single post-synaptic density-95/discs large/zonula occludens-1 (PDZ) domain. Previous studies suggest that the specificities of the Tiam1 and Tiam2 PDZ domains are distinct. Here, we sought to conclusively define these specificities and determine their molecular origin. Using a combinatorial peptide library, we identified a consensus binding sequence for each PDZ domain. Analysis of these consensus sequences and binding assays with peptides derived from native proteins indicated that these two PDZ domains have overlapping but distinct specificities. We also identified residues in two regions (S(0) and S(-2) pockets) of the Tiam1 PDZ domain that are important determinants of ligand specificity. Site-directed mutagenesis of four nonconserved residues in these two regions along with peptide binding analyses confirmed that these residues are crucial for ligand affinity and specificity. Furthermore, double mutant cycle analysis of each region revealed energetic couplings that were dependent on the ligand being investigated. Remarkably, a Tiam1 PDZ domain quadruple mutant had the same specificity as the Tiam2 PDZ domain. Finally, analysis of Tiam family PDZ domain sequences indicated that the PDZ domains segregate into four distinct families based on the residues studied here. Collectively, our data suggest that Tiam family proteins have highly evolved PDZ domain-ligand interfaces with distinct specificities and that they have disparate PDZ domain-dependent biological functions.  相似文献   

8.
Recognition of short linear motifs (SLiMs) or peptides by proteins is an important component of many cellular processes. However, due to limited and degenerate binding motifs, prediction of cellular targets is challenging. In addition, many of these interactions are transient and of relatively low affinity. Here, we focus on one of the largest families of SLiM‐binding domains in the human proteome, the PDZ domain. These domains bind the extreme C‐terminus of target proteins, and are involved in many signaling and trafficking pathways. To predict endogenous targets of PDZ domains, we developed MotifAnalyzer‐PDZ, a program that filters and compares all motif‐satisfying sequences in any publicly available proteome. This approach enables us to determine possible PDZ binding targets in humans and other organisms. Using this program, we predicted and biochemically tested novel human PDZ targets by looking for strong sequence conservation in evolution. We also identified three C‐terminal sequences in choanoflagellates that bind a choanoflagellate PDZ domain, the Monsiga brevicollis SHANK1 PDZ domain (mbSHANK1), with endogenously‐relevant affinities, despite a lack of conservation with the targets of a homologous human PDZ domain, SHANK1. All three are predicted to be signaling proteins, with strong sequence homology to cytosolic and receptor tyrosine kinases. Finally, we analyzed and compared the positional amino acid enrichments in PDZ motif‐satisfying sequences from over a dozen organisms. Overall, MotifAnalyzer‐PDZ is a versatile program to investigate potential PDZ interactions. This proof‐of‐concept work is poised to enable similar types of analyses for other SLiM‐binding domains (e.g., MotifAnalyzer‐Kinase). MotifAnalyzer‐PDZ is available at http://motifAnalyzerPDZ.cs.wwu.edu .  相似文献   

9.
N‐Methyl‐D‐aspartate (NMDA) receptors are key components in synaptic communication and are highly relevant in central nervous disorders, where they trigger excessive calcium entry into the neuronal cells causing harmful overproduction of nitric oxide by the neuronal nitric oxide synthase (nNOS) protein. Remarkably, NMDA receptor activation is aided by a second protein, postsynaptic density of 95 kDa (PSD95), forming the ternary protein complex NMDA/PSD95/nNOS. To minimize the potential side effects derived from blocking this ternary complex or either of its protein components, a promising approach points to the disruption of the PSD‐95/nNOS interaction which is mediated by a PDZ/PDZ domain complex. Since the rational development of molecules targeting such protein‐protein interaction relies on energetic and structural information herein, we include a thermodynamic and structural analysis of the PSD95‐PDZ2/nNOS‐PDZ. Two energetically relevant events are structurally linked to a “two‐faced” or two areas of recognition between both domains. First, the assembly of a four‐stranded antiparallel β‐sheet between the β hairpins of nNOS and of PSD95‐PDZ2, mainly enthalpic in nature, contributes 80% to the affinity. Second, binding is entropically reinforced by the hydrophobic interaction between side chains of the same nNOS β‐hairpin with the side chains of α2‐helix at the binding site of PSD95‐PDZ2, contributing the remaining 20% of the total affinity. These results suggest strategies for the future rational design of molecules able to disrupt this complex and constitute the first exhaustive thermodynamic analysis of a PDZ/PDZ interaction.  相似文献   

10.
PDZ domains are protein-protein interaction modules that recognize specific C-terminal sequences to assemble protein complexes in multicellular organisms. By scanning billions of random peptides, we accurately map binding specificity for approximately half of the over 330 PDZ domains in the human and Caenorhabditis elegans proteomes. The domains recognize features of the last seven ligand positions, and we find 16 distinct specificity classes conserved from worm to human, significantly extending the canonical two-class system based on position -2. Thus, most PDZ domains are not promiscuous, but rather are fine-tuned for specific interactions. Specificity profiling of 91 point mutants of a model PDZ domain reveals that the binding site is highly robust, as all mutants were able to recognize C-terminal peptides. However, many mutations altered specificity for ligand positions both close and far from the mutated position, suggesting that binding specificity can evolve rapidly under mutational pressure. Our specificity map enables the prediction and prioritization of natural protein interactions, which can be used to guide PDZ domain cell biology experiments. Using this approach, we predicted and validated several viral ligands for the PDZ domains of the SCRIB polarity protein. These findings indicate that many viruses produce PDZ ligands that disrupt host protein complexes for their own benefit, and that highly pathogenic strains target PDZ domains involved in cell polarity and growth.  相似文献   

11.
PDZ domains are among the most abundant protein modules in the known genomes. Their main function is to provide scaffolds for membrane-associated protein complexes by binding to the cytosolic, C-terminal fragments of receptors, channels, and other integral membrane proteins. Here, using both heteronuclear NMR and single crystal X-ray diffraction, we show how peptides with different sequences, including those corresponding to the C-termini of syndecan, neurexin, and ephrin B, can simultaneously bind to both PDZ domains of the scaffolding protein syntenin. The PDZ2 domain binds these peptides in the canonical fashion, and an induced fit mechanism allows for the accommodation of a range of side chains in the P(0) and P(-)(2) positions. However, binding to the PDZ1 domain requires that the target peptide assume a noncanonical conformation. These data help explain how syntenin, and perhaps other PDZ-containing proteins, may preferentially bind to dimeric and clustered targets, and provide a mechanistic explanation for the previously reported cooperative ligand binding by syntenin's two PDZ domains.  相似文献   

12.
βPIX (p21-activated kinase interacting exchange factor) and Shank/ProSAP protein form a complex acting as a protein scaffold that integrates signaling pathways and regulates postsynaptic structure. Complex formation is mediated by the C-terminal PDZ binding motif of βPIX and the Shank PDZ domain. The coiled-coil (CC) domain upstream of the PDZ binding motif allows multimerization of βPIX, which is important for its physiological functions. We have solved the crystal structure of the βPIX CC-Shank PDZ complex and determined the stoichiometry of complex formation. The βPIX CC forms a 76-Å-long parallel CC trimer. Despite the fact that the βPIX CC exposes three PDZ binding motifs in the C-termini, the βPIX trimer associates with a single Shank PDZ. One of the C-terminal ends of the CC forms an extensive β-sheet interaction with the Shank PDZ, while the other two ends are not involved in ligand binding and form random coils. The two C-terminal ends of βPIX have significantly lower affinity than the first PDZ binding motif due to the steric hindrance in the C-terminal tails, which results in binding of a single PDZ domain to the βPIX trimer. The structure shows canonical class I PDZ binding with a β-sheet interaction extending to position − 6 of βPIX. The βB-βC loop of Shank PDZ undergoes a conformational change upon ligand binding to form the β-sheet interaction and to accommodate the bulky side chain of Trp − 5. This structural study provides a clear picture of the molecular recognition of the PDZ ligand and the asymmetric association of βPIX CC and Shank PDZ.  相似文献   

13.
Li N  Hou T  Ding B  Wang W 《Proteins》2011,79(11):3208-3220
PDZ domain is one of the abundant modular domains that recognize short peptide sequences to mediate protein-protein interactions. To decipher the binding specificity of PDZ domain, we analyzed the interactions between 11 mouse PDZ domains and 2387 peptides using a method called MIEC-SVM, which energetically characterizes the domain-peptide interaction using molecular interaction energy components (MIECs) and predicts binding specificity using support vector machine (SVM). Cross-validation and leave-one-domain-out test showed that the MIEC-SVM using all 44 PDZ-peptide residue pairs at the interaction interface outperformed the sequence-based methods in the literature. A further feature (residue pair) selection procedure illustrated that 16 residue pairs were uninformative to the binding specificity, even though they contributed significantly (~50%) to the binding energy. If only using the 28 informative residue pairs, the performance of the MIEC-SVM on predicting the PDZ binding specificity was significantly improved. This analysis suggests that the informative and uninformative residue interactions between the PDZ domain and the peptide may represent those contributing to binding specificity and affinity, respectively. We performed additional structural and energetic analyses to shed light on understanding how the PDZ-peptide recognition is established. The success of the MIEC-SVM method on PDZ domains in this study and SH3 domains in our previous studies illustrates its generality on characterizing protein-peptide interactions and understanding protein recognition from a structural and energetic viewpoint.  相似文献   

14.
Gee SH  Quenneville S  Lombardo CR  Chabot J 《Biochemistry》2000,39(47):14638-14646
PDZ domains are modular protein-protein interaction domains that bind to specific C-terminal sequences of membrane proteins and/or to other PDZ domains. Certain PDZ domains in PSD-95 and syntrophins interact with C-terminal peptide ligands and heterodimerize with the extended nNOS PDZ domain. The capacity to interact with nNOS correlates with the presence of a Lys residue in the carboxylate- binding loop of these PDZ domains. Here, we report that substitution of an Arg for Lys-165 in PSD-95 PDZ2 disrupted its interaction with nNOS, but not with the C terminus of the Shaker-type K(+) channel Kv1.4. The same mutation affected nNOS binding to alpha1- and beta1-syntrophin PDZ domains to a lesser extent, due in part to the stabilizing effect of tertiary interactions with the canonical nNOS PDZ domain. PDZ domains with an Arg in the carboxylate-binding loop do not bind nNOS; however, substitution with Lys or Ala was able to confer nNOS binding. Our results indicate that the carboxylate-binding loop Lys or Arg is a critical determinant of nNOS binding and that the identity of this residue can profoundly alter one mode of PDZ recognition without affecting another. We also analyzed the effects of mutating Asp-143, a residue in the alphaB helix of alpha1-syntrophin that forms a tertiary contact with the nNOS PDZ domain. This residue is important for both nNOS and C-terminal peptide binding and confers a preference for peptides with a positively charged residue at position -4. On this basis, we have identified the C terminus of the Kir2.1 channel as a possible binding partner for syntrophin PDZ domains. Together, our results demonstrate that single-amino acid substitutions alter the specificity and affinity of PDZ domains for their ligands.  相似文献   

15.
The E6 oncoproteins from high‐risk mucosal human papillomavirus (HPV) induce cervical cancer via two major activities, the binding and the degradation of the p53 protein and PDZ domain‐containing proteins. Human MAGI‐1 is a multi‐PDZ domain protein implicated into protein complex assembly at cell–cell contacts. High‐risk mucosal HPV E6 proteins interact with the PDZ1 domain of MAGI‐1 via a C‐terminal consensus binding motif. Here, we developed a medium throughput protocol to accurately measure by surface plasmon resonance affinity constants of protein domains binding to peptidic sequences produced as recombinant fusions to the glutathione‐S‐transferase (GST). This approach was applied to measure the binding of MAGI‐1 PDZ1 to the C‐termini of viral or cellular proteins. Both high‐risk mucosal HPV E6 C‐terminal peptides and cellular partners of MAGI‐1 PDZ1 bind to MAGI‐1 PDZ1 with comparable dissociation constants in the micromolar range. MAGI‐1 PDZ1 shows a preference for C‐termini with a valine at position 0 and a negative charge at position ?3, confirming previous studies performed with HPV18 E6. A detailed combined analysis via site‐directed mutagenesis of the HPV16 C‐terminal peptide and PDZ1 indicated that interactions mediated by charged residues upstream the PDZ‐binding motif strongly contribute to binding selectivity of this interaction. In addition, our work highlighted the K499 residue of MAGI‐1 as a novel determinant of binding specificity. Finally, we showed that MAGI‐1 PDZ1 also binds to the C‐termini of LPP and Tax proteins, which were already known to bind to PDZ proteins but not to MAGI‐1. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
PDZ domains are protein-protein interaction modules that are crucial for the assembly of structural and signalling complexes. They specifically bind to short C-terminal peptides and occasionally to internal sequences that structurally resemble such peptide termini. The binding of PDZ domains is dominated by the residues at the P(0) and P(-2) position within these C-terminal targets, but other residues are also important in determining specificity. In this study, we analysed the binding specificity of the third PDZ domain of protein tyrosine phosphatase BAS-like (PTP-BL) using a C-terminal combinatorial peptide phage library. Binding of PDZ3 to C-termini is preferentially governed by two cysteine residues at the P(-1) and P(-4) position and a valine residue at the P(0) position. Interestingly, we found that this binding is lost upon addition of the reducing agent dithiothrietol, indicating that the interaction is disulfide-bridge-dependent. Site-directed mutagenesis of the single cysteine residue in PDZ3 revealed that this bridge formation does not occur intermolecularly, between peptide and PDZ3 domain, but rather is intramolecular. These data point to a preference of PTP-BL PDZ3 for cyclic C-terminal targets, which may suggest a redox state-sensing role at the cell cortex.  相似文献   

17.
Nan Li  Tingjun Hou  Bo Ding  Wei Wang 《Proteins》2013,81(9):1676-1676
PDZ domain is one of the abundant modular domains that recognize short peptide sequences to mediate protein–protein interactions. To decipher the binding specificity of PDZ domain, we analyzed the interactions between 11 mouse PDZ domains and 217 peptides using a method called MIECSVM, which energetically characterizes the domain‐peptide interaction using molecular interaction energy components (MIECs) and predicts binding specificity using support vector machine (SVM). Cross‐validation and leave‐one‐domain‐out test showed that the MIEC‐SVM using all 44 PDZ‐peptide residue pairs at the interaction interface outperformed the sequence‐based methods in the literature. A further feature (residue pair) selection procedure illustrated that 16 residue pairs were uninformative to the binding specificity, even though they contributed significantly (~50%) to the binding energy. If only using the 28 informative residue pairs, the performance of the MIEC‐SVM on predicting the PDZ binding specificity was significantly improved. This analysis suggests that the informative and uninformative residue interactions between the PDZ domain and the peptide may represent those contributing to binding specificity and affinity, respectively. We performed additional structural and energetic analyses to shed light on understanding how the PDZ‐peptide recognition is established. The success of the MIEC‐SVM method on PDZ domains in this study and SH3 domains in our previous studies illustrates its generality on characterizing protein‐ peptide interactions and understanding protein recognition from a structural and energetic viewpoint.  相似文献   

18.
The molecular mechanisms underlying the protein assembly at synaptic junctions are thought to be important for neural functions. PSD-95, one of the major postsynaptic density proteins, is composed of three PDZ domains (PDZ1, PDZ2, and PDZ3), an SH3 domain, and a GK (guanylate kinase ) domain. It binds to the N-methyl-D-aspartate glutamate receptor NR2 subunit or to the Shaker-type K(+) channel, Kv1.4, via the PDZ1 or PDZ2 domain, whereas PDZ3 binds to distinct partners. The intramolecular interaction of these multiple domains has been implicated in efficient protein clustering. We introduced missense and deletion mutations into PDZ1 (PDZ1mDelta) and/or PDZ2 (PDZ2mDelta) of the full-length PSD-95 to disrupt the association of each domain with the target proteins, while preserving the overall structure. The ion channel clustering activities of the PSD-95 mutants were analyzed in COS-1 cells coexpressing each mutant and Kv1.4. The mutant bearing the dysfunctional PDZ2 (PSD-95:1-2mDelta) showed significantly reduced clustering efficiency, whereas the mutant with the dysfunctional PDZ1 (PSD-95:1mDelta-2) exhibited activity comparable with the wild-type activity. Furthermore, we also examined the requirements for the position of PDZ2 in full-length PSD-95 by constructing a series of PDZ1-PDZ2 inversion mutants. Surprisingly, the clustering activity of PSD-95:2-1mDelta was severely defective. Taken together, these findings show that PDZ2, which is endowed with the highest affinity for Kv1.4, is required for efficient ligand binding. In addition, the ligand binding at the position of the second PDZ domain in full-length PSD-95 is prerequisite for efficient and typical cluster formation. This study suggests that the correct placement of the multiple domains in the full-length PSD-95 protein is necessary for the optimal protein activity.  相似文献   

19.
PDZ (PSD-95/Discs-large/ZO1) domains are interaction modules that typically bind to specific C-terminal sequences of partner proteins and assemble signaling complexes in multicellular organisms. We have analyzed the existing database of PDZ domain structures in the context of a specificity tree based on binding specificities defined by peptide-phage binding selections. We have identified 16 structures of PDZ domains in complex with high-affinity ligands and have elucidated four additional structures to assemble a structural database that covers most of the branches of the PDZ specificity tree. A detailed comparison of the structures reveals features that are responsible for the diverse specificities across the PDZ domain family. Specificity differences can be explained by differences in PDZ residues that are in contact with the peptide ligands, but these contacts involve both side-chain and main-chain interactions. Most PDZ domains bind peptides in a canonical conformation in which the ligand main chain adopts an extended β-strand conformation by interacting in an antiparallel fashion with a PDZ β-strand. However, a subset of PDZ domains bind peptides with a bent main-chain conformation and the specificities of these non-canonical domains could not be explained based on canonical structures. Our analysis provides a structural portrait of the PDZ domain family, which serves as a guide in understanding the structural basis for the diverse specificities across the family.  相似文献   

20.
Binding selectivity and cross-reactivity within one of the largest and most abundant interaction domain families, the PDZ family, has long been enigmatic. The complete human PDZ domain complement (the PDZome) consists of 267 domains and we applied here a Bayesian selectivity model to predict hundreds of human PDZ domain interactions, using target sequences of 22,997 non-redundant proteins. Subsequent analysis of these binding scores shows that PDZs can be divided into two genome-wide clusters that coincide well with the division between canonical class 1 and 2 PDZs. Within the class 1 PDZs we observed binding overlap at unprecedented levels, mediated by two residues at positions 1 and 5 of the second α-helix of the binding pocket. Eight PDZ domains were subsequently selected for experimental binding studies and to verify the basics of our predictions. Overall, the PDZ domain class 1 cross-reactivity identified here implies that auxiliary mechanisms must be in place to overcome this inherent functional overlap and to minimize cross-selectivity within the living cell. Indeed, when we superimpose PDZ domain binding affinities with gene ontologies, network topology data and the domain position within a PDZ superfamily protein, functional overlap is minimized and PDZ domains position optimally in the binding space. We therefore propose that PDZ domain selectivity is achieved through cellular context rather than inherent binding specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号