首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Summary The contractile properties of swimming muscles have been investigated in marine teleosts from Antarctic (Trematomus lepidorhinus, Pseudochaenichthys georgianus), temperate (Pollachius virens, Limanda limanda, Agonis cataphractus, Callionymus lyra), and tropical (Abudefduf abdominalis, Thalassoma duperreyi) latitudes. Small bundles of fast twitch fibres were isolated from anterior myotomes and/or the pectoral fin adductor profundis muscle (m. add. p). Live fibre preparations were viable for several days at in vivo temperatures, but became progressively inexcitable at higher or lower temperatures. The stimulation frequency required to produce fused isometric tetani increased from 50 Hz in Antarctic species at 0°C to around 400 Hz in tropical species at 25°C. Maximum isometric tension (Po) was produced at the normal body temperature (NBT) of each species (Antarctic, 0–2°C; North Sea and Atlantic, 8–10°C; Indo-West Pacific, 23–25°C). P0 values at physiological temperatures (200–300 kN·m–2) were similar for Antarctic, temperate, and tropical species. A temperature induced tension hysteresis was observed in muscle fibres from some species. Exposure to <0°C in Antarctic and <2°C in temperate fish resulted in the temporary depression of tension over the whole experimental range, an effect reversed by incubation at higher temperatures. At normal body temperatures the half-times for activation and relaxation of twitch and tetanic tension increased in the order Antarctic>temperate>tropical species. Relaxation was generally much slower at temperatures <10°C in fibres from tropical than temperate fish. Q10 values for these parameters at NBTs were 1.3 2.1 for tropical species, 1.7–2.6 for temperate species, and 1.6–3.5 for Antarctic species. The forcevelocity (P-V) relationship was studied in selected species using iso-velocity releases and the data below 0.8 P0 iteratively fitted to Hill's equation. The P-V relation at NBT was found to be significantly less curved in Antarctic than temperate species. The unloaded contraction velocity (Vmax) of fibres was positively correlated with NBT increasing from about 1 muscle fibre length·s–;1 in an Antarctic fish (Trematomus lepidorhinus) at 1°C to around 16 muscle fibre lengths·s–1 in a tropical species (Thalassoma duperreyi) at 24°C. It is concluded that although muscle contraction in Antarctic fish shows adaptations for low temperature function, the degree of compensation achieved in shortening speed and twitch kinetics is relatively modest.Abbreviations ET environmental temperature - m. add. p major adductor profundis - m. add. s. major adductor superficialis - NBT normal body temperature - P 0 maximum isometric tension - P-V force velocity - SR sarcoplasmic reticulum - T 1/2 a half activation time - T 1/2 r half relaxation time - V max unloaded contraction  相似文献   

2.
Rotifer cultures of Brachionus plicatilis (SINTEF-strain, length 250 m) rich in 3 fatty acids were starved for > 5 days at variable temperature (0–18 °C). The net specific loss rate of rotifer numbers were 0.04 day–1 (range 0–0.08 day–1) at 5–18 °C, but reached values up to 0.25 day–1 at 0–3 °C. The loss rate was independent on culture density (range 40–1000 ind ml–1), but was to some extent dependent on the initial physiological state of the rotifers (i.e., egg ratio).The loss rate of lipids was 0.02–0.05 day–1 below 10 °C, where the potential growth rate of the rotifer is low (0–0.09 day–1). The loss rate of lipids increased rapidly for higher temperatures where the rotifer can maintain positive growth, and reached 0.19 day–1 at 18 °C. The Q10 for the lipid loss rate versus temperature was higher than the Q10 for respiration found in other strains. This may suggest that other processes than respiration were involved in lipid catabolism. The content of 3 fatty acids became reduced somewhat faster than the lipids (i.e. in particular 22:6 3), but the fatty acid per cent distribution remained remarkably unaffected by the temperature during starvation.The results showed that rotifer cultures could be starved for up to 4 days at 5–8 °C without essential quantitative losses of lipids, 3 fatty acids, and rotifers. The rotifers exhausted their endogenous lipids through reproduction (anabolism) and respiration (including enhanced locomotion) at higher temperatures. At lower temperatures, the mortality rate became very high.  相似文献   

3.
Summary Single fast fibres and small bundles of slow fibres were isolated from the trunk muscles of an Antarctic (Notothenia neglecta) and various warm water marine fishes (Blue Crevally,Carangus melampygus; Grey Mullet,Mugil cephalus; Dolphin Fish,Coryphaena hippurus; Skipjack-tuna,Katsuwonus pelamis and Kawakawa,Euthynuus affinis). Fibres were chemically skinned with the nonionic detergent Brij 58.For warm water species, maximum Ca2+-activated tension (P 0) almost doubled between 5–20°C with little further increase up to 30°C. However, when measured at their normal body temperatures,P 0 values for fast fibres were similar for all species examined, 15.7–22.5 N · cm–2. Ca2+-regulation of contraction was disrupted at temperatures above 15°C in the Antarctic species, but was maintained at up to 30°C for warm water fish.Unloaded (maximum) contraction speeds (V max) of fibres were determined by the slacktest method. In general,V max was approximately two times higher in white than red muscles for all species studied, except Skipjack tuna. For Skipjack tuna,V max of superficial red and white fibres was similar (15.7 muscle lengths · s–1 (L 0 · s–1)) but were 6.5 times faster than theV max of internal red muscle fibres (2.4±0.2L 0 · s–1) (25°C). V max forN. neglecta fast fibres at 0–5°C (2–3L 0 · s–1) were similar to that of warm water species measured at 10–20°C. However, when measured at their normal muscle temperatures, theV max for the fast muscle fibres of the warm water species were 2–3 times higher than that forN. neglecta.In general,Q 10(15–30°C) values forV max were in the range 1.8–2.0 for all warm water species studied except Skipjack tuna.V max for the internal red muscle fibres of Skipjack tuna were much more temperature dependent (Q 10(15–30°C)=3.1) (P<0.01) than for superficial red or white muscle fibres. The proportion of slower red muscle fibres in tuna (28% for 1 kg Skipjack) is 3–10 times higher than for most teleosts and is related to the tuna's need to sustain high cruising speeds. We suggest that the 8–10°C temperature gradient that can exist in Skipjack tuna between internal red and white muscles allows both fibre types to contract at the same speed. Therefore, in tuna, both red and white muscle may contribute to power generation during high speed swimming.  相似文献   

4.
Summary Respiratory energy losses in five species of ciliated protozoa, Tetrahymena pyriformis Ehrenberg, Vorticella microstoma Ehrenberg, Paramecium aurelia Ehrenberg, Spirostomum teres Claparède and Lachmann and Frontonia leucas Ehrenberg, were investigated at 8.5° C, 15° C and 20° C using Cartesian diver microrespirometry. Q 10 values of 1.15–2.24 were found for four of the species between 8.5–15° C, while in S. teres a Q 10 of 12.98 occurred between these temperatures. Between 15–20° C T. pyriformis and P. aurelia had Q 10 values of 3.73 and 1.56, respectively. Linear double log regressions of oxygen consumption vs. dry weight were derived at each temperature and regression coefficients (b) of 0.2723 (8.5° C), 0.4364 (15° C) and 0.4171 (20° C) were obtained. The results are explained and discussed in relation to previous work on the energetics of ciliated protozoa.  相似文献   

5.
The physiological ecology of Mytilus californianus Conrad   总被引:5,自引:0,他引:5  
Summary The rates of oxygen consumption, filtration and ammonia excretion by Mytilus californianus have been related to body size and to ration. The rate of oxygen consumption (VO2) by individuals while immersed, measured on the shore, resembled rates recorded for mussels starved in the laboratory. VO2 by M. californianus was relatively independent of change in temperature, with a Q 10 (13–22° C) of 1.20. In contrast, the frequency of heart beat was more completely temperature dependent [Q 10 (13–22° C)=2.10]. Filtration rate showed intermediate dependence on temperature change [Q 10 (13–22° C)=1.49] up to 22° C, but declined at 26° C. Both VO2 and filtration rate declined during starvation. The utilisation efficiency for oxygen was low (approx. 4%) between 13 and 22° C, but increased to 10% at 26° C. Three components of the routine rate of oxygen consumption are recognised and estimated; viz. a basal rate (0.136 ml O2 h-1 for a mussel of 1 g dry flesh weight), a physiological cost of feeding (which represented about 6% of the calories in the ingested ration), and a mechanical cost of feeding which was three times higher than the physiological cost. The ratio oxygen consumed to ammonia-nitrogen excreted was low, and it declined during starvation. These data are compared with previously published measurements on Mytilus edulis, and the two species of mussel are shown to be similar in some of their physiological characteristics, though possibly differing in their capacities to compensate for change in temperature. For M. californianus, the scope for growth was highest at 17–22° C and declined at 26° C; it is suggested that exposure to temperatures in excess of 22° C, as for example during low tides in the summer, might result in a cumulative stress on these populations of mussels by imposing a metabolic deficit which must be recovered at each subsequent high tide. The high mechanical cost of feeding imposes a more general constraint on the scope for activity of the species.  相似文献   

6.
Effects of temperature on properties of flight neurons in the locust   总被引:1,自引:0,他引:1  
High ambient temperatures increase the wing-beat frequency in flying locusts, Locusta migratoria. We investigated parameters of circuit and cellular properties of flight motoneurons at temperatures permissive for flight (20–40 °C). As the thoracic temperature increased motoneuronal conduction velocity increased from an average of 4.40 m/s at 25 °C to 6.73 m/s at 35 °C, and the membrane time constant decreased from 11.45 ms to 7.52 ms. These property changes may increase locust wing-beat frequency by affecting the temporal summation of inputs to flight neurons in the central circuitry. Increases in thoracic temperature from 25–35 °C also resulted in a hyperpolarization of the resting membrane potentials of flight motoneurons from an average of-41.1 mV to -47.5 mV, and a decrease of input resistances from an average of 3.45 M to 2.00 M. Temperature affected the measured input resistance both by affecting membrane properties, and by altering synaptic input. We suggest that the increase in conduction velocity Q10=1.53) and the decrease of membrane time constant (Q10=0.62) would more than account for the wing-beat frequency increase (Q10=1.15). Hyperpolarization of the resting membrane potential (Q10=1.18) and reduction in input resistance (Q10=0.54) may be involved in automatic compensation of temperature effects.Abbreviations ANOVA analysis of variance - CPG central pattern generator - DL dorsal longitudinal muscles - EMG electromyographic - MN motoneuron - PSP post synaptic potential - Q10 temperature coefficient - RMP resting membrane potential - S.D. standard deviation - SR stretch receptor  相似文献   

7.
Based on previous studies (Klöckner, 1976b) dealing with field investigations on breeding season, choice of substratum, growth and mortality of the sessile filter-feeding tube wormPomatoceros triqueter in Helgoland waters (southern North Sea), data from laboratory experiments on the physiological potential of the polychaete in regard to temperature are presented. Adult worms tolerated temperatures from –3° C (24 h LT 28) to 30° C (24 h LT 50) when heated or cooled in steps of 1 C° d–1; a two-week period of acclimation within 6° to 18° C did not change their tolerance. Standard oxygen consumption and regeneration of the calcareous tube were found to be dependent on temperature, body weight and food supply; acclimation periods of two weeks had no significant influence. Highly increasing metabolic rates were noted between 6° and 18° C (Q10-values up to 6) and a maximum was found between 20° and 24° C (0.32 g O2 mg–1h–1 and 10.2 g CaCO3 mg–1d–1); tube regeneration followed a nonlinear regression of y=ax–b when compared to body weight and was reduced by starving animals to less than 50% within 15 days. Filtration activity ofP. triqueter, however, was found to be highly independent of temperature from 12° to 24° C; maximum activity was 1 ml mg–1 h–1 (all data refer to fresh weight). For comparisons with the results of previous field investigations onP. triqueter some intraspecific correlations of the different parameters employed (tube sizes, fresh and dry weight) are presented as exponential functions of y=axb.  相似文献   

8.
Characteristics of thermoluminescence glow curves were compared in three types of Euglena cells: (i) strictly autotrophic, Cramer and Myers cells; (ii) photoheterotrophic cells sampled from an exponentially growing culture containing lactate as substrate repressing the photosynthetic activity; (iii) semiautotrophic cells, sampled when the lactate being totally exhausted, the photosynthesis was enhanced.In autotrophic and semiautotrophic cells, composite curves were observed after series of two or more actinic flashes fired at –10°C, which can be deconvoluted into a large band peaking in the range 12–22°C and a smaller one near 40°C, This second band presents the characteristics of a typical B band (due to S2/3QB - recombination), whereas the first one resembled the band, shifted by -15–20°C, which is observed in herbicide resistant plants. The amplitude of this major band, which was in all cases very low after one flash, exhibited oscillations of period four but rapidly damping, with maxima after two and six flashes. In contrast, photoheterotrophic Euglena displayed single, non-oscillating curves with maxima in the range 5–10°C.In autotrophic and semiautotrophic cells, oxidizing pretreatments by either a preillumination with one or more (up to twenty-five) flashes, or a far-red preillumination in the presence of methylviologen, followed by a short dark period, induced thermoluminescence bands almost single and shifted by +3–5°C, or +12°C, respectively. In autotrophic cells, far-red light plus methyl viologen treatment induced a band peaking at 31°C, as in isolated thylakoids from Euglena or higher plants, while it had barely any effect in photoheterotrophic cells.Due to metabolic activities in dark-adapted cells, a reduction of redox groups at the donor and acceptor sides of PS II dark-adapted cells is supposed to occur. Two different explanations can be proposed to explain such a shift in the position of the main band in dark-adapted autotrophic control. The first explanation would be that in these reducing conditions a decreasing value of the equilibrium constant for the reaction: SnQA -QBSnQAQB -, would determine the shift of the main TL band towards low temperatures, as observed in herbicide resistant material. The second explanation would be that the main band would correspond to peak III already observed in vivo and assigned to S2/3QB 2- recombinations.Abbreviations CM Cramer and Myers - D1 a 32 kDa protein component of the PS II reaction center, psbA.gene product - D2 a 34 kDa protein component of the PS II reaction center, psbD gene product - FR lar-red illumination - Lexpo and Lstat cells from lactate culture samples at exponential and stationary phase of growth - MV methylviologen - pBQ parabenzoquinone - PQ plastoquinone - PS II photosystem II - QA primary quinone electron acceptor - QB secondary quinone electron acceptor - TL thermoluminescence  相似文献   

9.
Summary Respiratory gas exchange and blood respiratory properties have been studied in the East-African tree frogChiromantis petersi. This frog is unusually xerophilous, occupies dry habitats and prefers body temperatures near 40°C and direct solar exposure. Total O2 uptake was low at 81 l O2·g–1·h–1±19.0 (SD) at 25°C increasing to 253.5 l O2·g–1·h–1±94.8 (SD) at 40°C giving aQ 10 value of 2.1. Skin O2 uptake at 25°C was 38.5% of total. The gas exchange ratio was 0.71 for whole body gas exchange, 0.61 for the lungs and 1.02 for the skin at 25°C.Blood O2 affinity was low with aP 50 of 47.5 mmHg at 25°C and pH 7.65. Then H-value at 25°C increased from 2.7 aroundP 50 to 5.0 at O2 saturations exceeding 70–80%. Surprisingly, blood O2 affinity was nearly insensitive to temperature expressed by a H value of ±1.0 kcal·mole between 25 and 40°C.The adaptive significance of the low O2 affinity, the increase ofn H with O2 saturation and the temperature insensitive O2-Hb binding is discussed in relation to the high and fluctuating body temperatures ofChiromantis.  相似文献   

10.
Johanna Laybourn 《Oecologia》1979,41(3):329-337
Summary Growth and respiration were measured in a species of Anonchus (Nematoda: Plectidae) at 5°C, 10°C, 15°C, 20°C and 25°C. At 5°C no growth was measurable but the organisms remained active. Maximum production occurred at 15°C, but the highest rate of growth occurred at 20°C. Thus, adult size attained is dependent on the temperature of growth. Respiratory energy losses derived from Cartesian diver microrespirometry, increased with temperature up to 25°C. Regression coefficients (b values) derived from a log log linear regression of weight against oxygen consumption varied between 0.574–1.793, the lowest value being attained at 5°C, the highest at 20°C. Based on Q10, production and respiratory energy losses the optimum temperatures for Anonchus appears to lie between 10°C–15°C.  相似文献   

11.
Laurencia brongniartii is usually found at depths below 4 m, but can be found in shallow subtidal areas in crevices and on the walls of a coral reef in Amami Oshima Island, Kagoshima Prefecture, Japan, where irradiances were significantly lower than those at similar depths in open water. In preparation for the possible cultivation of this species for its antibiotic compounds, the effects of temperature and irradiance on photosynthesis and growth were measured. Photosynthesis and growth rates of L. brongniartii explants were highest at 26 and 28 °C, which closely corresponded to temperatures found during August to late December when it was most abundant. The estimated maximum photosynthesis rate (P max) was 4.41 mol photon m–2 s–1 at 26 °C and 4.07 mol photon m–2 s–1 at 28 °C. Saturating irradiance occurred at 95 mol photon m–2 s–1 at 26 °C and 65 mol photon m–2 s–1 at 28 °C. In contrast, growth experiments at 41.7 mol photon m–2 s–1 caused bleaching of explants and the maximum growth rate observed during the study was 3.02 ± 0.75% day–1 at 28 °C and 25 mol photon m–2 s–1. The difference in the saturating irradiance for photosynthesis and the irradiance that caused bleaching in growth experiments suggests that long-term exposure to high irradiance was detrimental and should be addressed before the initiation of large scale cultivation.  相似文献   

12.
The Antarctic notothenioids are among the most stenothermal of fishes, well adapted to their stable, cold and icy environment. The current study set out to investigate the thermal sensitivity/insensitivity of heart rate and ventral aortic blood pressure of the Antarctic nototheniid fish Pagothenia borchgrevinki over a range of temperatures. The heart rate increased rapidly from –1 to 6°C (Q10=2.0–3.3), but was relatively insensitive to temperature above the ~6°C lethal limit of the species (Q10=1.2). The increase in heart rate from –1 to 6°C was the result of a 45% increase in excitatory adrenergic tone, masking a 37% increase in inhibitory cholinergic tone. Ventral aortic pressure was regulated well above the lethal limit, up to at least 10°C. With the return of the fish to environmental temperatures, the heart rate rapidly decreased back to control levels, while ventral aortic pressure increased and remained elevated for over an hour following a 6°C exposure.  相似文献   

13.
The distribution and abundance of benthic algae and macroinvertebrates were examined along a natural thermal gradient formed by hot springs in Little Geysers Creek, Sonoma Co., California, USA. Maximum water temperatures ranged from 52 °C at the uppermost station to 23 °C at a station 400 m downstream. Benthic chlorophyll a decreased exponentially from 2.5 g m–2 at 52 °C to less than 0.1 g m–2 at 23 °C, a pattern of decline also exhibited by algal phaeophytin. Blue-green algae dominated at higher temperatures but were replaced by filamentous green algae and diatoms at lower temperatures.Macroinvertebrates were absent at temperatures 45 °C; the highest density (> 150 000 m–2, mainly Chironomidae) occurred at 34 °C, whereas biomass was highest (4.6 g m–2, as dry weight) at 23 °C and species richness (15 species) was highest at 27 °C. The two predominant macroinvertebrate populations (the midge Tanytarsus sp. and the caddisfly Helicopsyche borealis) occurred at sites that were several degrees below their lethal thermal threshold, suggesting that a temperature buffer is maintained.  相似文献   

14.
Park  Heum Gi  Lee  Kyun Woo  Cho  Sung Hwoan  Kim  Hyung Sun  Jung  Min-Min  Kim  Hyeung-Sin 《Hydrobiologia》2001,(1):369-374
The freshwater rotifer, Brachionus calyciflorus is one of the live food organisms used for the mass production of larval fish. In this study possibility of obtaining high density cultures of the freshwater rotifer B. calyciflorus were investigated. The two culture systems used differed in their air and dissolved oxygen supplies using three temperatures in each case: 24, 28 and 32 °C. Rotifers were batch-cultured using 5 l-vessels and fed with the freshwater Chlorella. The growth rate of rotifers significantly increased with an increase in temperature. The maximum density of the rotifers with air-supply at 24 °C, 6500 ind. ml–1, was significantly lower than those cultured at 28 and 32 °C, i.e. 8600 and 8100 ind. ml–1, respectively. Dissolved oxygen levels decreased with time and ranged from 0.8 to 1.4 mg l–1 when the density of freshwater rotifer was the highest at each temperature. The highest density (19200 ind. ml–1) of freshwater rotifer was obtained in cultures with a supply of oxygen at 28 °C. Densities of 13500 and 17200 ind. ml–1 were found at 24 and 32 °C, respectively. Levels of NH3-N increased with time and a dramatic increase of NH3-N was observed at high temperatures. Levels of NH3-N at 24, 28 and 32 °C were 13.2, 18.5 and 24.5 mg l–1, respectively. These levels coincided with the highest rotifer density at each of the three temperatures. When rotifers were cultured with an oxygen-supply and pH was adjusted to 7, the maximum density of rotifer reached 33500 ind. ml–1 at 32 °C . These results suggested that high density culture of freshwater rotifer, B. calyciflorus could be achieved under optimal conditions with DO value of exceeding 5 mg l–1 and NH3-N values of lower than 12.0 mg l–1.  相似文献   

15.
Twenty-one bacterial associations isolated from the soda lakes of the southern Transbaikal region were found to be able to actively grow at pH 9–10 on methanol as the source of carbon and energy. Two alkalitolerant facultatively methylotrophic strains, Bur 3 and Bur 5, were obtained in pure cultures. Both strains represent gram-negative, nonmotile, bean-shaped, encapsulated cells that reproduce by binary fission. The strains are able to grow at temperatures ranging from 6 to 42°C, with an optimum growth temperature of 25–29°C (strain Bur 3) and 35–37°C (strain Bur 5) and at pH between 6.5 and 9.5, with an optimum pH value of 8.0–8.5. At pH 9.0, strain Bur 3 exhibits an increased content of phosphatidylglycerol and a decreased content of phosphatidylethanolamine. Strains Bur 3 and Bur 5 are similar in the G+C content of their DNAs (66.2 and 65.5 mol %, respectively) and in the type of the dominant ubiquinone (Q 10). Unlike Bur 5, strain Bur 3 is able to grow autotrophically in an atmosphere of CO2+ O2+ H2. The strains oxidize, by the respective dehydrogenases, methanol to CO2, which is assimilated by the ribulose bisphosphate pathway. Ammonium ions are assimilated in the glutamate cycle and by the reductive amination of -ketoglutarate. The strains are highly homologous to each other (92%) and are much less homologous (at a level of 28–35%) to representatives of the genus Ancylobacter, A. aquaticusATCC 25396Tand A. vacuolatumDSM 1277. Based on the results obtained, both strains are assigned to a new species, Ancylobacter natronumsp. nov.  相似文献   

16.
The joint effects of growth temperature, incubation temperature, and molybdenum concentration on the nitrogen fixation rate ofAnabaena cylindrica were determined using the acetylene-reduction technique. The nitrogen-fixation response to increased molybdenum concentration varied among three growth temperatures (15°, 23°, and 30° C). The pattern of rate change was similar within a growth temperature but increased overall in magnitude with the three incubation temperatures (also 15°, 23°, and 30° C). The maximum rate of nitrogen fixation occurred at 30°C regardless of previous growth temperature. The minimum molybdenum concentration necessary to yield substantial acetylene reduction varied with growth temperature: at 15°C, 15g 1–1 was effective; at 23°C, less than 5g 1–1 was effective; and at 30°C, 50g 1–1 was effective. At all three growth temperatures, increases in molybdenum concentration above the minimum effective concentration produced increases in acetylene reduction. However, at higher molybdenum concentrations inhibition of nitrogen fixation occurred.  相似文献   

17.
Summary The combined effect of various temperatures and light intensities on the growth of seven species of antarctic diatoms in culture has been studied. With the exception of Chaetoceros deflandrei whose thermal tolerance is fairly good, these obligatory psychrophils cannot survive in temperatures above 6° to 9° C. Their mean growth rate is relatively low, between 0.24 div d–1 for Corethron criophilum and 0.63 div d–1 for C. deflandrei. Regardless of light intensity, growth rate increased with the temperature to reach a maximum between 3° and 5° C. The highest rates were obtained between 115 and 220 mol m–2 s–1 with 0.38 div d–1 for C. criophilum, 0.56 div d–1 for Synedra sp. and between 0.71 and 0.88 div d–1 for the other 5 species. A reduction in light intensity from 220 to 46 mol m–2 s–1 slowed growth by nearly 50%. These results suggest that the combined effect of temperature and light is one of the factors involved in the limitation of antarctic phytoplankton growth. The low temperatures of the environment do not permit rapid growth, which, even under optimal light conditions remains low. In addition, in the euphotic layer, the overall light energy available for algae is considerably reduced due to turbulence, a factor which exacerbates the reduced growth rate.  相似文献   

18.
Summary In order to obtain a better understanding of the behaviour ofPediococcus pentosaceus in food products as well to facilitate the designing of industrial production processes for the organism, the growth and lactic acid production ofPediococcus pentosaceus in a complex glucose medium was followed in batch cultures at different gas environments (CO2, air, N2 and static cultures without gasflow), temperatures (10–50°C), pH (4.3–7.3) and nitrite concentrations (0–700 ppm). Optimal growth was obtained in CO2 at 40°C and pH 6.3 and resulted in a maximum specific growth rate ( max) of 1.27 h–1. In static culture at 40°C and pH 6.3 the max was 1.21 h–1. The max was, compared with static culture, reduced in air (12%) and nitrogen (26%). At 10°C the max was reduced by 99% and at 50°C by 88%. The reduction at pH 4.3 and 7.3 was 65% and 57%, respectively. Nitrite did not affect the max at any pH but increased the lag phase at pH 4.3 by a factor of 12. The lactic acid production was linked to the growth. The total amount of lactic acid produced was the same in all the tested gases and nitrite concentrations and also within the wide temperature range (15–45°C) and pH range (5.3–7.3). Mainly L(+)-lactic acid was produced during the exponential growth phase, but after this growth declined about 30% of the L(+)-lactic acid was converted to D(–)-lactic acid. The lactic acid product yield and the cellmass yied were both affected by the temperature but not by the pH.  相似文献   

19.
The temperature dependence of the rate of de-epoxidation of violaxanthin to zeaxanthin was determined in leaves of chilling-sensitive Gossypium hirsutum L. (cotton) and chilling-resistant Malva parviflora L. by measurements of the increase in absorbance at 505 nm (A 505) and in the contents of antheraxanthin and zeaxanthin that occur upon exposure of predarkened leaves to excessive light. A linear relationship between A 505 and the decrease in the epoxidation state of the xanthophyll-cycle pigment pool was obtained over the range 10–40° C. The maximal rate of de-epoxidation was strongly temperature dependent; Q10 measured around the temperature at which the leaf had developed was 2.1–2.3 in both species. In field-grown Malva the rate of de-epoxidation at any given measurement temperature was two to three times higher in leaves developed at a relatively low temperature in the early spring than in those developed in summer. Q10 measured around 15° C was in the range 2.2–2.6 in both kinds of Malva leaves, whereas it was as high as 4.6 in cotton leaves developed at a daytime temperature of 30° C. Whereas the maximum (initial) rate of de-epoxidation showed a strong decrease with decreased temperature the degree of de-epoxidation reached in cotton leaves after a 1–2 · h exposure to a constant photon flux density increased with decreased temperature as the rate of photosynthesis decrease. The zeaxanthin content rose from 2 mmol · (mol chlorophyll)–1 at 30° C to 61 mmol · (mol Chl)–1 at 10° C, corresponding to a de-epoxidation of 70% of the violaxanthin pool at 10° C. The degree of de-epoxidation at each temperature was clearly related to the amount of excessive light present at that temperature. The relationship between non-photochemical quenching of chlorophyll fluorescence and zeaxanthin formation at different temperatures was determined for both untreated control leaves and for leaves in which zeaxanthin formation was prevented by dithiothreitol treatment. The rate of development of that portion of non-photochemical quenching which was inhibited by dithiothreitol decreased with decreasing temperature and was linearly related to the rate of zeaxanthin formation over a wide temperature range. In contrast, the rate of development of the dithiothreitol-resistant portion of non-photochemical quenching was remarkably little affected by temperature. Evidently, the kinetics of the development of non-photochemical quenching upon exposure of leaves to excessive light is therefore in large part determined by the rate of zeaxanthin formation. For reasons that remain to be determined the relaxation of dithiothreitolsensitive quenching that is normally observed upon darkening of illuminated leaves was strongly inhibited at low temperatures.Abbreviations and Symbols Chl chlorophyll - DTT dithiothreitol - EPS epoxidation state - NPQ non-photochemical chlorophyll fluorescence quenching - PFD photon flux density - PSII photosystem II - F, Fm fluorescence emission at the actual, full closure of the PSII centers C.I.W.-D.P.B. Publication No. 1092We thank Connie Shih for skillful assistance in growing the plants, for conducting the HPLC analyses, and for preparing the figures. A Carnegie Institution Fellowship and a Feodor-Lynen-Fellowship by the Alexander von Humboldt-Foundation to W.B. is gratefully acknowledged. This work was supported by Grant No. 89-37-280-4902 of the Competitive Grants Program of the U.S. Department of Agriculture to O.B.  相似文献   

20.
The oxygen consumption rate (OCR) is a cumulative index of metabolic losses during aerobic metabolism. The generalized relationship of oxygen consumption rate (R, n1 O2 ind–1 h–1) and dry body mass (M, µg) for rotifers is described by the equation: R = 9.15M0.716. The level of rotifer metabolism is slightly lower than that of multicellular poikilothermic animals. Differences of OCR values in ontogenesis are substantial. Embryos and senile individuals are characterized by minimal OCR values. The OCR of oviparous females in the beginning of reproduction exceeds 2–3 times OCR values of juveniles. Differences in oxygen consumption intensity (OCI) are not so essential. OCR depends on food concentration. An increase of food concentration from 1.4 to 7.0 µg dry mass m1–1 resulted in Brachionus calyciflorus in an OCR escalation of 2.5 times at 30°C, and 0.5 times at 25°C. Maximal OCR values occur at food concentration close to the saturation concentration for population growth rate. An exponential equation is adequate to describe R-t dependence for animals, long-term adapted to different constant temperatures (2 < Q10 < 3). Acclimation effects observed during sharp temperature changes are determined by peculiarities of compensation reactions in species and separate populations. The formation of a zone of relative temperature independence of OCR (Q10 1) at fluctuating temperature is observed. It is necessary to study enzymatic activities parallel to OCR and OCI measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号