首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Elucidating the complex combinations of growth factors and signaling molecules that maintain pluripotency or, alternatively, promote the controlled differentiation of human embryonic stem cells (hESCs) has important implications for the fundamental understanding of human development, devising cell replacement therapies, and cancer cell biology. hESCs are commonly grown on irradiated mouse embryonic fibroblasts (MEFs) or in conditioned medium from MEFs. These culture conditions interfere with many experimental conclusions and limit the ability to perform conclusive proteomics studies. The current investigation avoided the use of MEFs or MEF-conditioned medium for hESC culture, allowing global proteomics analysis without these confounding conditions, and elucidated neural cell-specific signaling pathways involved in noggin-induced hESC differentiation. Based on these analyses, we propose the following early markers of hESC neural differentiation: collapsin response mediator proteins 2 and 4 and the nuclear autoantigenic sperm protein as a marker of pluripotent hESCs. We then developed a directed mass spectrometry assay using multiple reaction monitoring (MRM) to identify and quantify these markers and in addition the epidermal ectoderm marker cytokeratin-8. Analysis of global proteomics, quantitative RT-PCR, and MRM data led to testing the isoform interference hypothesis where redundant peptides dilute quantification measurements of homologous proteins. These results show that targeted MRM analysis on non-redundant peptides provides more exact quantification of homologous proteins. This study describes the facile transition from discovery proteomics to targeted MRM analysis and allowed us to identify and verify several potential biomarkers for hESCs during noggin-induced neural and BMP4-induced epidermal ectoderm differentiation.  相似文献   

3.
Human embryonic stem cell (hESC) lines are derived from the inner cell mass (ICM) of preimplantation human blastocysts obtained on days 5–6 following fertilization. Based on their derivation, they were once thought to be the equivalent of the ICM. Recently, however, studies in mice reported the derivation of mouse embryonic stem cell lines from the epiblast; these epiblast lines bear significant resemblance to human embryonic stem cell lines in terms of culture, differentiation potential and gene expression. In this study, we compared gene expression in human ICM cells isolated from the blastocyst and embryonic stem cells. We demonstrate that expression profiles of ICM clusters from single embryos and hESC populations were highly reproducible. Moreover, comparison of global gene expression between individual ICM clusters and human embryonic stem cells indicated that these two cell types are significantly different in regards to gene expression, with fewer than one half of all genes expressed in both cell types. Genes of the isolated human inner cell mass that are upregulated and downregulated are involved in numerous cellular pathways and processes; a subset of these genes may impart unique characteristics to hESCs such as proliferative and self-renewal properties.  相似文献   

4.
Human embryonic stem cells (hESC) are able to maintain pluripotency in culture, to proliferate indefinitely and to differentiate into all somatic cell types. Due to these unique properties, hESC may become an exceptional source of tissues for transplantation and have a great potential for the therapy of incurable diseases. Here, we review new developments in the area of embryonic stem cells and discuss major challenges — standardization of protocols for cell derivation and cultivation, identification of specific molecular markers, development of new approaches for directed differentiation, etc. — which remain to be settled, prior to safe and successful clinical application of stem cells. We appraise several potential approaches in hESC-based therapy including derivation of autologous cells via therapeutic cloning (1), generation of immune tolerance to allogenic donor cells via hematopoetic chimerism (2), and development of the banks of hESC lines compatible with the main antigens and exhibiting equivalent pluripotency (3). In addition, we discuss briefly induced pluripotent cells, which are derived via genetic modification of autologous somatic cells and are analogous to ESC. Our analysis demonstrates that uncontrollable differentiation in vivo and teratogenic potential of hESC are critical limitations of their application in clinical practice. Therefore, the major approach in hESC therapy is derivation of a specific differentiated progeny, which has lower proliferative potential and immune privilege, yet poses fewer risks for organism. The review demonstrates that cell therapy is far more complex and resource-consuming process as compared with drug-based medicine and consequently pluripotent stem cell biology and technology still requires further investigation and development before these cells can be used in clinical practice.  相似文献   

5.
The use of pluripotent stem cells in regenerative medicine and disease modeling is complicated by the variation in differentiation properties between lines. In this study, we characterized 13 human embryonic stem cell (hESC) and 26 human induced pluripotent stem cell (hiPSC) lines to identify markers that predict neural differentiation behavior. At a general level, markers previously known to distinguish mouse ESCs from epiblast stem cells (EPI-SCs) correlated with neural differentiation behavior. More specifically, quantitative analysis of miR-371-3 expression prospectively identified hESC and hiPSC lines with differential neurogenic differentiation propensity and in vivo dopamine neuron engraftment potential. Transient KLF4 transduction increased miR-371-3 expression and altered neurogenic behavior and pluripotency marker expression. Conversely, suppression of miR-371-3 expression in KLF4-transduced cells rescued neural differentiation propensity. miR-371-3 expression level therefore appears to have both a predictive and a functional role in determining human pluripotent stem cell neurogenic differentiation behavior.  相似文献   

6.
Human embryonic stem cells (hESC) are characterized by their ability to self-renew and differentiate into all cell types of the body, making them a valuable resource for regenerative medicine. Yet, the molecular mechanisms by which hESC retain their capacity for self-renewal and differentiation remain unclear. The Hedgehog signaling pathway plays a pivotal role in organogenesis and differentiation during development, and is also involved in the proliferation and cell-fate specification of neural stem cells and neural crest stem cells. As there has been no detailed study of the Sonic hedgehog (SHH) signaling pathway in hESC, this study examines the expression and functional role of SHH during hESC self-renewal and differentiation. Here, we show the gene and protein expression of key components of the SHH signaling pathway in hESC and differentiated embryoid bodies. Despite the presence of functioning pathway components, SHH plays a minimal role in maintaining pluripotency and regulating proliferation of undifferentiated hESC. However, during differentiation with retinoic acid, a GLI-responsive luciferase assay and target genes PTCH1 and GLI1 expression reveal that the SHH signaling pathway is highly activated. Besides, addition of exogenous SHH to hESC differentiated as embryoid bodies increases the expression of neuroectodermal markers Nestin, SOX1, MAP2, MSI1, and MSX1, suggesting that SHH signaling is important during hESC differentiation toward the neuroectodermal lineage. Our findings provide a new insight in understanding the SHH signaling in hESC and the further development of hESC differentiation for regenerative medicine.  相似文献   

7.
Pluripotent stem cells are derived from the inner cell mass of preimplantation embryos, and display the ability of the embryonic founder cells by forming all three germ lineages in vitro. It is well established that the cellular niche plays an important role in stem cell maintenance and differentiation. Stem cells generally have limited function without the specialized microenvironment of the niche that provides key cell-cell contact, soluble mediators, and extracellular matrices. We were interested in the role that Wnt signaling, in particular Wnt3a, played in human embryonic stem cell (hESC) differentiation to hepatic endoderm in vitro. hESC differentiation to hepatic endoderm was efficient in pure stem cell populations. However, in younger hESC lines, generating stromal cell mesenchyme, our model was very inefficient. The negative effect of stroma could be reversed by pretreating hESCs with Wnt3a prior to the onset of hepatocyte differentiation. Wnt3a pretreatment reinstated efficient hESC differentiation to hepatic endoderm. These studies represent an important step in understanding hepatocyte differentiation from hESCs and the role played by the cellular niche in vitro.  相似文献   

8.
9.
10.
Human pluripotent embryonic stem cells (hESC) have great promise for research into human developmental biology and the development of cell therapies for the treatment of diseases. To meet the increased demand for characterized hESC lines, we present the derivation and characterization of five hESC lines on mouse embryonic fibroblast cells. Our stem cell lines are characterized by morphology, long-term expansion, and expression profiles of a number of specific markers, including TRA-1-60, TRA-1-81, alkaline phosphatase, connexin 43, OCT-4, NANOG, CXCR4, NODAL, LEFTY2, THY-1, TDGF1, PAX6, FOXD3, SOX2, EPHA2, FGF4, TAL1, AC133 and REX-1. The pluripotency of the cell line was confirmed by spontaneous differentiation under in vitro conditions. Whereas all of the cell lines expressed all the characteristics of undifferentiated pluripotent hESC, two of the cell lines carried a triploid karyotype.  相似文献   

11.

Background  

Individual differences between human embryonic stem cell (hESC) lines are poorly understood. Here, we describe the derivation of five hESC lines (called FES 21, 22, 29, 30 and 61) from frozen-thawed human embryos and compare their individual differentiation characteristic.  相似文献   

12.
The Notch signaling pathway plays important roles in cell-fate determination during embryonic development and adult life. In this study, we focus on the role of Notch signaling in governing cell-fate choices in human embryonic stem cells (hESCs). Using genetic and pharmacological approaches, we achieved both blockade and conditional activation of Notch signaling in several hESC lines. We report here that activation of Notch signaling is required for undifferentiated hESCs to form the progeny of all three embryonic germ layers, but not trophoblast cells. In addition, transient Notch signaling pathway activation enhanced generation of hematopoietic cells from committed hESCs. These new insights into the roles of Notch in hESC-fate determination may help to efficiently direct hESC differentiation into therapeutically relevant cell types.  相似文献   

13.
14.
Human pluripotent stem cells (hPSCs) have great potential for studying human embryonic development, for modeling human diseases in the dish and as a source of transplantable cells for regenerative applications after disease or accidents. Neural crest (NC) cells are the precursors for a large variety of adult somatic cells, such as cells from the peripheral nervous system and glia, melanocytes and mesenchymal cells. They are a valuable source of cells to study aspects of human embryonic development, including cell fate specification and migration. Further differentiation of NC progenitor cells into terminally differentiated cell types offers the possibility to model human diseases in vitro, investigate disease mechanisms and generate cells for regenerative medicine. This article presents the adaptation of a currently available in vitro differentiation protocol for the derivation of NC cells from hPSCs. This new protocol requires 18 days of differentiation, is feeder-free, easily scalable and highly reproducible among human embryonic stem cell (hESC) lines as well as human induced pluripotent stem cell (hiPSC) lines. Both old and new protocols yield NC cells of equal identity.  相似文献   

15.
Lee DS  Yu K  Rho JY  Lee E  Han JS  Koo DB  Cho YS  Kim J  Lee KK  Han YM 《Life sciences》2006,80(2):154-159
Human embryonic stem cells (hESCs) are able to differentiate into various cell types, including neuronal cells and glial cells. However, little information is available regarding astrocyte differentiation. This report describes the differentiation of hESCs into nestin- and GFAP-expressing astrocytes following treatment with cyclopamine, which is an inhibitor of Hedgehog (Hh) signaling, and culturing in human astrocyte medium (HAM). In hESCs, cyclopamine treatment suppressed the expression of Hh signaling molecules, the Hh signaling target gene, and ESC-specific markers. Clyclopamine also induced the differentiation of the cells at the edges of the hESC colonies, and these cells stained positively for the early neural marker nestin. Subsequent culturing in HAM promoted the expression of the astrocyte-specific marker GFAP, and these cells were also nestin-positive. These findings indicate that treatment with cyclopamine followed by culturing in HAM leads to the differentiation of hESCs into nestin- and GFAP-expressing astrocytic lineage.  相似文献   

16.
17.
Human embryonic stem cell (hESC) lines can be established from the preimplantation embryos. Due to their ability to differentiate into all three embryonic layers, hESC are of significant interest as a renewable source of cell material for different applications, especially for cell replacement therapy. Since the establishment of the first hESC lines in 1998, several studies have described the derivation and culture of new hESC lines using various derivation methods and culture conditions. Our group has currently established eight new hESC lines of which three of the latest ones are described in a more detailed way in this report. The described lines have been established using mechanical derivation methods for surplus bad quality embryos and culture conditions containing human foreskin fibroblast feeder cells and serum-free culture medium. All the new lines have a normal karyotype and typical hESC characteristics analyzed in vitro. The described hESC lines are available for research purposes upon request (www.regea.fi).  相似文献   

18.
19.
The etiology of sporadic Alzheimer disease (AD) is largely unknown, although evidence implicates the pathological hallmark molecules amyloid beta (Aβ) and phosphorylated Tau. Work in animal models suggests that altered axonal transport caused by Kinesin-1 dysfunction perturbs levels of both Aβ and phosphorylated Tau in neural tissues, but the relevance of Kinesin-1 dependent functions to the human disease is unknown. To begin to address this issue, we generated human embryonic stem cells (hESC) expressing reduced levels of the kinesin light chain 1 (KLC1) Kinesin-1 subunit to use as a source of human neural cultures. Despite reduction of KLC1, undifferentiated hESC exhibited apparently normal colony morphology and pluripotency marker expression. Differentiated neural cultures derived from KLC1-suppressed hESC contained neural rosettes but further differentiation revealed obvious morphological changes along with reduced levels of microtubule-associated neural proteins, including Tau and less secreted Aβ, supporting the previously established connection between KLC1, Tau and Aβ. Intriguingly, KLC1-suppressed neural precursors (NPs), isolated using a cell surface marker signature known to identify cells that give rise to neurons and glia, unlike control cells, failed to proliferate. We suggest that KLC1 is required for normal human neural differentiation, ensuring proper metabolism of AD-associated molecules APP and Tau and for proliferation of NPs. Because impaired APP metabolism is linked to AD, this human cell culture model system will not only be a useful tool for understanding the role of KLC1 in regulating the production, transport and turnover of APP and Tau in neurons, but also in defining the essential function(s) of KLC1 in NPs and their progeny. This knowledge should have important implications for human neurodevelopmental and neurodegenerative diseases.  相似文献   

20.
One of the challenges in studying early differentiation of human embryonic stem cells (hESCs) is being able to discriminate the initial differentiated cells from the original pluripotent stem cells and their committed progenies. It remains unclear how a pluripotent stem cell becomes a lineage-specific cell type during early development, and how, or if, pluripotent genes, such as Oct4 and Sox2, play a role in this transition. Here, by studying the dynamic changes in the expression of embryonic surface antigens, we identified the sequential loss of Tra-1-81 and SSEA4 during hESC neural differentiation and isolated a transient Tra-1-81(-)/SSEA4(+) (TR-/S4+) cell population in the early stage of neural differentiation. These cells are distinct from both undifferentiated hESCs and their committed neural progenitor cells (NPCs) in their gene expression profiles and response to extracellular signalling; they co-express both the pluripotent gene Oct4 and the neural marker Pax6. Furthermore, these TR-/S4+ cells are able to produce cells of both neural and non-neural lineages, depending on their environmental cues. Our results demonstrate that expression of the pluripotent factor Oct4 is progressively downregulated and is accompanied by the gradual upregulation of neural genes, whereas the pluripotent factor Sox2 is consistently expressed at high levels, indicating that these pluripotent factors may play different roles in the regulation of neural differentiation. The identification of TR-S4+ cells provides a cell model for further elucidation of the molecular mechanisms underlying hESC neural differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号