首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The hepatitis C virus (HCV) NS5B protein encodes an RNA-dependent RNA polymerase (RdRp), the primary catalytic enzyme of the HCV replicase complex. We established a biochemical RNA synthesis assay, using purified recombinant NS5B lacking the C-terminal 21 amino acid residues, to identify potential polymerase inhibitors from a high throughput screen of the GlaxoSmithKline proprietary compound collection. The benzo-1,2,4-thiadiazine compound 1 was found to be a potent, highly specific inhibitor of NS5B. This agent interacts directly with the viral polymerase and inhibits RNA synthesis in a manner noncompetitive with respect to GTP. Furthermore, in the absence of an in vitro-reconstituted HCV replicase assay employing viral and host proteins, the ability of compound 1 to inhibit NS5B-directed viral RNA replication was determined using the Huh7 cell-based HCV replicon system. Compound 1 reduced viral RNA in replicon cells with an IC(50) of approximately 0.5 microm, suggesting that the inhibitor was able to access the perinuclear membrane and inhibit the polymerase activity in the context of a replicase complex. Preliminary structure-activity studies on compound 1 led to the identification of a modified inhibitor, compound 4, showing an improvement in both biochemical and cell-based potency. Lastly, data are presented suggesting that these compounds interfere with the formation of negative and positive strand progeny RNA by a similar mode of action. Investigations are ongoing to assess the potential utility of such agents in the treatment of chronic HCV disease.  相似文献   

2.
The non‐structural protein 4B (NS4B) of the hepatitis C virus (HCV) is an endoplasmic reticulum (ER) membrane protein comprising two consecutive amphipathic α‐helical domains (AH1 and AH2). Its self‐oligomerization via the AH2 domain is required for the formation of the membranous web that is necessary for viral replication. Previously, we reported that the host‐encoded ER‐associated reticulon 3 (RTN3) protein is involved in the formation of the replication‐associated membranes of (+)RNA enteroviruses during viral replication. In this study, we demonstrated that the second transmembrane region of RTN3 competed for, and bound to, the AH2 domain of NS4B, thus abolishing NS4B self‐interaction and leading to the downregulation of viral replication. This interaction was mediated by two crucial residues, lysine 52 and tyrosine 63, of AH2, and was regulated by the AH1 domain. The silencing of RTN3 in Huh7 and AVA5 cells harbouring an HCV replicon enhanced the replication of HCV, which was counteracted by the overexpression of recombinant RTN3. The synthesis of viral RNA was also increased in siRNA‐transfected human primary hepatocytes infected with HCV derived from cell culture. Our results demonstrated that RTN3 acted as a restriction factor to limit the replication of HCV.  相似文献   

3.
The hepatitis C virus (HCV) NS5B protein is the viral RNA-dependent RNA polymerase required for replication of the HCV RNA genome. We have identified a peptide that most closely resembles a short region of the protein kinase C-related kinase 2 (PRK2) by screening of a random 12-mer peptide library displayed on the surface of the M13 bacteriophage with NS5B proteins immobilized on microwell plates. Competitive phage enzyme-linked immunosorbent assay with a synthetic peptide showed that the phage clone displaying this peptide could bind HCV RNA polymerase with a high affinity. Coimmunoprecipitation and colocalization studies demonstrated in vivo interaction of NS5B with PRK2. In vitro kinase assays demonstrated that PRK2 specifically phosphorylates NS5B by interaction with the N-terminal finger domain of NS5B (amino acids 1-187). Consistent with the in vitro NS5B-phosphorylating activity of PRK2, we detected the phosphorylated form of NS5B by metabolic cell labeling. Furthermore, HCV NS5B immunoprecipitated from HCV subgenomic replicon cells was specifically recognized by an antiphosphoserine antibody. Knock-down of the endogenous PRK2 expression using a PRK2-specific small interfering RNA inhibited HCV RNA replication. In contrast, PRK2 overexpression, which was accompanied by an increase of in the level of its active form, dramatically enhanced HCV RNA replication. Altogether, our results indicate that HCV RNA replication is regulated by NS5B phosphorylation by PRK2.  相似文献   

4.
Hepatitis C virus (HCV) NS5B protein has been shown to have RNA-dependent RNA polymerase (RdRp) activity by itself and is a key enzyme involved in viral replication. Using analyses with the yeast two-hybrid system and in vitro binding assay, we found that human eukaryotic initiation factor 4AII (heIF4AII), which is a component of the eIF4F complex and RNA-dependent ATPase/helicase, interacted with NS5B protein. These two proteins were shown to be partially colocalized in the perinuclear region. The binding site in HCV NS5B protein was localized within amino acid residues 495 to 537 near the C terminus. Since eIF4A has a helicase activity and functions in a bidirectional manner, the binding of HCV NS5B protein to heIF4AII raises the possibility that heIF4AII facilitates the genomic RNA synthesis of NS5B protein by unwinding the secondary structure of the HCV genome and is a host component of viral replication complex.  相似文献   

5.
Phosphatidylinositol 4-kinase III alpha (PI4KA) is an essential cofactor of hepatitis C virus (HCV) replication. We initiated this study to determine whether HCV directly engages PI4KA to establish its replication. PI4KA kinase activity was found to be absolutely required for HCV replication using a small interfering RNA transcomplementation assay. Moreover, HCV infection or subgenomic HCV replicons produced a dramatic increase in phosphatidylinositol 4-phosphate (PI4P) accumulation throughout the cytoplasm, which partially colocalized with the endoplasmic reticulum. In contrast, the majority of PI4P accumulated at the Golgi bodies in uninfected cells. The increase in PI4P was not observed after infection with UV-inactivated HCV and did not reflect changes in PI4KA protein or RNA abundance. In an analysis of U2OS cell lines with inducible expression of the HCV polyprotein or individual viral proteins, viral polyprotein expression resulted in enhanced cytoplasmic PI4P production. Increased PI4P accumulation following HCV protein expression was precluded by silencing the expression of PI4KA, but not the related PI4KB. Silencing PI4KA also resulted in aberrant agglomeration of viral replicase proteins, including NS5A, NS5B, and NS3. NS5A alone, but not other viral proteins, stimulated PI4P production in vivo and enhanced PI4KA kinase activity in vitro. Lastly, PI4KA coimmunoprecipitated with NS5A from infected Huh-7.5 cells and from dually transfected 293T cells. In sum, these results suggest that HCV NS5A modulation of PI4KA-dependent PI4P production influences replication complex formation.  相似文献   

6.
Cyclophilin B is a functional regulator of hepatitis C virus RNA polymerase   总被引:8,自引:0,他引:8  
Viruses depend on host-derived factors for their efficient genome replication. Here, we demonstrate that a cellular peptidyl-prolyl cis-trans isomerase (PPIase), cyclophilin B (CyPB), is critical for the efficient replication of the hepatitis C virus (HCV) genome. CyPB interacted with the HCV RNA polymerase NS5B to directly stimulate its RNA binding activity. Both the RNA interference (RNAi)-mediated reduction of endogenous CyPB expression and the induced loss of NS5B binding to CyPB decreased the levels of HCV replication. Thus, CyPB functions as a stimulatory regulator of NS5B in HCV replication machinery. This regulation mechanism for viral replication identifies CyPB as a target for antiviral therapeutic strategies.  相似文献   

7.
Allosteric inhibition of the hepatitis C virus (HCV) NS5B RNA-dependent RNA polymerase enzyme has recently emerged as a viable strategy toward blocking replication of viral RNA in cell-based systems. We report here 2 series of indole-N-acetamides, bearing physicochemically diverse carboxylic acid replacements, which show potent affinity for the NS5B enzyme with reduced potential for formation of glucuronide conjugates. Preliminary optimization of these series furnished compounds that are potent in the blockade of subgenomic HCV RNA replication in HUH-7 cells.  相似文献   

8.
Gao L  Aizaki H  He JW  Lai MM 《Journal of virology》2004,78(7):3480-3488
The lipid raft membrane has been shown to be the site of hepatitis C virus (HCV) RNA replication. The mechanism of formation of the replication complex is not clear. We show here that the formation of the HCV RNA replication complex on lipid raft (detergent-resistant membranes) requires interactions among the HCV nonstructural (NS) proteins and may be initiated by the precursor of NS4B, which has the intrinsic property of anchoring to lipid raft membrane. In hepatocyte cell lines containing an HCV RNA replicon, most of the other NS proteins, including NS5A, NS5B, and NS3, were also localized to the detergent-resistant membranes. However, when individually expressed, only NS4B was associated exclusively with lipid raft. In contrast, NS5B and NS3 were localized to detergent-sensitive membrane and cytosolic fractions, respectively. NS5A was localized to both detergent-sensitive and -resistant membrane fractions. Furthermore, we show that a cellular vesicle membrane transport protein named hVAP-33 (the human homologue of the 33-kDa vesicle-associated membrane protein-associated protein), which binds to both NS5A and NS5B, plays a critical role in the formation of HCV replication complex. The hVAP-33 protein is partially associated with the detergent-resistant membrane fraction. The expression of dominant-negative mutants and small interfering RNA of hVAP-33 in HCV replicon cells resulted in the relocation of NS5B from detergent-resistant to detergent-sensitive membranes. Correspondingly, the amounts of both HCV RNA and proteins in the cells were reduced, indicating that hVAP-33 is critical for the formation of HCV replication complex and RNA replication. These results indicate that protein-protein interactions among the various HCV NS proteins and hVAP-33 are important for the formation of HCV replication complex.  相似文献   

9.
丙型肝炎病毒(HCV)感染个体后在宿主细胞内长时间保持低水平复制,与慢性肝炎、肝硬化及肝细胞肝癌的发生密切相关.目前,HCV感染后肝细胞发生转化的具体机制还不清楚.非结构蛋白5B(NS5B)是HCV编码的非结构蛋白之一,具有RNA依赖的RNA聚合酶活性(RdRp),是病毒复制所需的关键酶.除参与病毒复制外,NS5B通过...  相似文献   

10.
Influence of the biogenic polyamines spermine, spermidine, and putrescine as well as their derivatives on the replication enzymes of hepatitis C virus (HCV) was investigated. It was found that spermine and spermidine activate HCV RNA-dependent RNA polymerase (NS5B protein). This effect was not caused by the stabilization of the enzyme or by competition with template-primer complex, but rather it was due to achievement of true maximum velocity V max. Natural polyamines and their derivatives effectively inhibited the helicase reaction catalyzed by another enzyme of HCV replication — helicase/NTPase (NS3 protein). However, these compounds affected neither the NTPase reaction nor its activation by polynucleotides. Activation of the HCV RNA polymerase and inhibition of the viral helicase were shown at physiological concentrations of the polyamines. These data suggest that biogenic polyamines may cause differently directed effects on the replication of the HCV genome in an infected cell.  相似文献   

11.
12.
The hepatitis C virus (HCV) NS3/4A protein has several essential roles in the virus life cycle, most probably through dynamic interactions with host factors. To discover cellular cofactors that are co-opted by HCV for its replication, we elucidated the NS3/4A interactome using mass spectrometry and identified Y-box-binding protein 1 (YB-1) as an interacting partner of NS3/4A protein and HCV genomic RNA. Importantly, silencing YB-1 expression decreased viral RNA replication and severely impaired the propagation of the infectious HCV molecular clone JFH-1. Immunofluorescence studies further revealed a drastic HCV-dependent redistribution of YB-1 to the surface of the lipid droplets, an important organelle for HCV assembly. Core and NS3 protein-dependent polyprotein maturation were shown to be required for YB-1 relocalization. Unexpectedly, YB-1 knockdown cells showed the increased production of viral infectious particles while HCV RNA replication was impaired. Our data support that HCV hijacks YB-1-containing ribonucleoparticles and that YB-1-NS3/4A-HCV RNA complexes regulate the equilibrium between HCV RNA replication and viral particle production.  相似文献   

13.
Like all other positive-strand RNA viruses, hepatitis C virus (HCV) induces rearrangements of intracellular membranes that are thought to serve as a scaffold for the assembly of the viral replicase machinery. The most prominent membranous structures present in HCV-infected cells are double-membrane vesicles (DMVs). However, their composition and role in the HCV replication cycle are poorly understood. To gain further insights into the biochemcial properties of HCV-induced membrane alterations, we generated a functional replicon containing a hemagglutinin (HA) affinity tag in nonstructural protein 4B (NS4B), the supposed scaffold protein of the viral replication complex. By using HA-specific affinity purification we isolated NS4B-containing membranes from stable replicon cells. Complementing biochemical and electron microscopy analyses of purified membranes revealed predominantly DMVs, which contained viral proteins NS3 and NS5A as well as enzymatically active viral replicase capable of de novo synthesis of HCV RNA. In addition to viral factors, co-opted cellular proteins, such as vesicle-associated membrane protein-associated protein A (VAP-A) and VAP-B, that are crucial for viral RNA replication, as well as cholesterol, a major structural lipid of detergent-resistant membranes, are highly enriched in DMVs. Here we describe the first isolation and biochemical characterization of HCV-induced DMVs. The results obtained underline their central role in the HCV replication cycle and suggest that DMVs are sites of viral RNA replication. The experimental approach described here is a powerful tool to more precisely define the molecular composition of membranous replication factories induced by other positive-strand RNA viruses, such as picorna-, arteri- and coronaviruses.  相似文献   

14.
The mechanism and machinery of hepatitis C virus (HCV) RNA replication are still poorly understood. In this study, we labeled de novo-synthesized viral RNA in situ with bromouridine triphosphate (BrUTP) in Huh7 cells expressing an HCV subgenomic replicon. By immunofluorescence staining using an anti-BrUTP antibody and confocal microscopy, we showed that the newly synthesized HCV RNA was localized to distinct speckle-like structures, which also contain all of the HCV nonstructural (NS) proteins. These speckles are distinct from lipid droplets and are separated from the endoplasmic reticulum (ER), where some HCV NS proteins also reside. Membrane flotation analysis demonstrated that almost all of the NS5A and part of the NS5B proteins and all of the viral RNA were present in membrane fractions which are resistant to treatment with 1% NP-40 at 4 degrees C. They were cofractionated with caveolin-2, a lipid-raft-associated intracellular membrane protein, in the presence or absence of the detergent. In contrast, the ER-resident proteins were detergent soluble. These properties suggest that the membranes on which HCV RNA replication occurs are lipid rafts recruited from the intracellular membranes. The protein synthesis inhibitors cycloheximide and puromycin did not inhibit viral RNA synthesis, indicating that HCV RNA replication does not require continuous protein synthesis. We suggest that HCV RNA synthesis occurs on a lipid raft membrane structure.  相似文献   

15.
The NS5B RNA-dependent RNA polymerase encoded by hepatitis C virus (HCV) plays a key role in viral replication. Reported here is evidence that HCV NS5B polymerase acts as a functional oligomer. Oligomerization of HCV NS5B protein was demonstrated by gel filtration, chemical cross-linking, temperature sensitivity, and yeast cell two-hybrid analysis. Mutagenesis studies showed that the C-terminal hydrophobic region of the protein was not essential for its oligomerization. Importantly, HCV NS5B polymerase exhibited cooperative RNA synthesis activity with a dissociation constant, K(d), of approximately 22 nM, suggesting a role for the polymerase-polymerase interaction in the regulation of HCV replicase activity. Further functional evidence includes the inhibition of the wild-type NS5B polymerase activity by a catalytically inactive form of NS5B. Finally, the X-ray crystal structure of HCV NS5B polymerase was solved at 2.9 A. Two extensive interfaces have been identified from the packing of the NS5B molecules in the crystal lattice, suggesting a higher-order structure that is consistent with the biochemical data.  相似文献   

16.
Studies on the replication of hepatitis C virus (HCV) have been facilitated by the development of selectable subgenomic replicons replicating in the human hepatoma cell line Huh-7 at a surprisingly high level. Analysis of the replicon population in selected cells revealed the occurrence of cell culture-adaptive mutations that enhance RNA replication substantially. To gain a better understanding of HCV cell culture adaptation, we characterized conserved mutations identified by sequence analysis of 26 independent replicon cell clones for their effect on RNA replication. Mutations enhancing replication were found in nearly every nonstructural (NS) protein, and they could be subdivided into at least two groups by their effect on replication efficiency and cooperativity: (i). mutations in NS3 with a low impact on replication but that enhanced replication cooperatively when combined with highly adaptive mutations and (ii). mutations in NS4B, -5A, and -5B, causing a strong increase in replication but being incompatible with each other. In addition to adaptive mutations, we found that the host cell plays an equally important role for efficient RNA replication. We tested several passages of the same Huh-7 cell line and found up to 100-fold differences in their ability to support replicon amplification. These differences were not due to variations in internal ribosome entry site-dependent translation or RNA degradation. In a search for cellular factor(s) that might be responsible for the different levels of permissiveness of Huh-7 cells, we found that replication efficiency decreased with increasing amounts of transfected replicon RNA, indicating that viral RNA or proteins are cytopathic or that host cell factors in Huh-7 cells limit RNA amplification. In summary, these data show that the efficiency of HCV replication in cell culture is determined both by adaptation of the viral sequence and by the host cell itself.  相似文献   

17.
丙型肝炎病毒基因组结构及功能   总被引:1,自引:0,他引:1  
丙型肝炎病毒(hepatitis C virus, HCV)是单股正链的RNA 病毒,全长为9.6 kb,包括1个大的开放阅读框(ORF)和两侧的5′,3′非编码区(UTRs).核糖体通过进入HCV 5′UTR 端的内部核糖体进入位点(IRES),将HCV基因组翻译成1个聚蛋白前体.前体聚蛋白被宿主和病毒的蛋白酶共同切割成为若干个具有独立功能的HCV蛋白,根据功能的不同分别命名为C、E1、E2、p7、NS2、NS3、NS4A、NS4B、NS5A 和NS5B,它们不但在HCV的生活史中发挥着重要的作用,也影响着宿主细胞的信号传导、凋亡及物质代谢等一系列生化过程.近年来,随着HCV体外细胞摸型的不断发展,其病毒分子生物学方面的研究取得了很大的进展.本文从基因组结构及其编码的蛋白功能等方面阐述了HCV病毒的研究进展,为致病机理的研究及抗HCV药物的开发和疫苗研制等提供理论基础.  相似文献   

18.
Lim YS  Tran HT  Park SJ  Yim SA  Hwang SB 《Journal of virology》2011,85(17):8777-8788
The life cycle of hepatitis C virus (HCV) is highly dependent on cellular factors. Using small interfering RNA (siRNA) library screening, we identified peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) as a host factor involved in HCV propagation. Here we demonstrated that silencing of Pin1 expression resulted in decreases in HCV replication in both HCV replicon cells and cell culture-grown HCV (HCVcc)-infected cells, whereas overexpression of Pin1 increased HCV replication. Pin1 interacted with both the NS5A and NS5B proteins. However, Pin1 expression was increased only by the NS5B protein. Both the protein binding and isomerase activities of Pin1 were required for HCV replication. Juglone, a natural inhibitor of Pin1, inhibited HCV propagation by inhibiting the interplay between the Pin1 and HCV NS5A/NS5B proteins. These data indicate that Pin1 modulates HCV propagation and may contribute to HCV-induced liver pathogenesis.  相似文献   

19.
The replication of the hepatitis C viral (HCV) genome is accomplished by the NS5B RNA-dependent RNA polymerase (RdRp), for which mechanistic understanding and structure-guided drug design efforts have been hampered by its propensity to crystallize in a closed, polymerization-incompetent state. The removal of an autoinhibitory β-hairpin loop from genotype 2a HCV NS5B increases de novo RNA synthesis by >100-fold, promotes RNA binding, and facilitated the determination of the first crystallographic structures of HCV polymerase in complex with RNA primer-template pairs. These crystal structures demonstrate the structural realignment required for primer-template recognition and elongation, provide new insights into HCV RNA synthesis at the molecular level, and may prove useful in the structure-based design of novel antiviral compounds. Additionally, our approach for obtaining the RNA primer-template-bound structure of HCV polymerase may be generally applicable to solving RNA-bound complexes for other viral RdRps that contain similar regulatory β-hairpin loops, including bovine viral diarrhea virus, dengue virus, and West Nile virus.  相似文献   

20.
Blight KJ 《Journal of virology》2011,85(16):8158-8171
The nonstructural 4B (NS4B) protein of hepatitis C virus (HCV) plays a central role in the formation of the HCV replication complex. To gain insight into the role of charged residues for NS4B function in HCV RNA replication, alanine substitutions were engineered in place of 28 charged residues residing in the N- and C-terminal cytoplasmic domains of the NS4B protein of the HCV genotype 1b strain Con1. Eleven single charged-to-alanine mutants were not viable, while the remaining mutants were replication competent, albeit to differing degrees. By selecting revertants, second-site mutations were identified for one of the lethal NS4B mutations. Second-site mutations mapped to NS4B and partially suppressed the lethal replication phenotype. Further analyses showed that three NS4B mutations disrupted the formation of putative replication complexes, one mutation altered the stability of the NS4B protein, and cleavage at the NS4B/5A junction was significantly delayed by another mutation. Individual charged-to-alanine mutations did not affect interactions between the NS4B and NS3-4A proteins. A triple charged-to-alanine mutation produced a temperature-sensitive replication phenotype with no detectable RNA replication at 39°C, demonstrating that conditional mutations can be obtained by altering the charge characteristics of NS4B. Finally, NS4B mutations dispensable for efficient Con1 RNA replication were tested in the context of the chimeric genotype 2a virus, but significant defects in infectious-virus production were not detected. Taken together, these findings highlight the importance of charged residues for multiple NS4B functions in HCV RNA replication, including the formation of a functional replication complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号