首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Species associated with transient habitats need efficient dispersal strategies to ensure their regional survival. Using a spatially explicit metapopulation model, we studied the effect of the dispersal range on the persistence of a metapopulation as a function of the local population and landscape dynamics (including habitat patch destruction and subsequent regeneration). Our results show that the impact of the dispersal range depends on both the local population and patch growth. This is due to interactions between dispersal and the dynamics of patches and populations via the number of potential dispersers. In general, long-range dispersal had a positive effect on persistence in a dynamic landscape compared to short-range dispersal. Long-range dispersal increases the number of couplings between the patches and thus the colonisation of regenerated patches. However, long-range dispersal lost its advantage for long-term persistence when the number of potential dispersers was low due to small population growth rates and/or small patch growth rates. Its advantage also disappeared with complex local population dynamics and in a landscape with clumped patch distribution.  相似文献   

2.
Comparison of dispersal rates of the bog fritillary butterfly between continuous and fragmented landscapes indicates that between patch dispersal is significantly lower in the fragmented landscape, while population densities are of the same order of magnitude. Analyses of the dynamics of the suitable habitat for the butterfly in the fragmented landscape reveal a severe, non linear increase in spatial isolation of patches over a time period of 30 years (i.e. 30 butterfly generations), but simulations of the butterfly metapopulation dynamics using a structured population model show that the lower dispersal rates in the fragmented landscape are far above the critical threshold leading to metapopulation extinction. These results indicate that changes in individual behaviour leading to the decrease of dispersal rates in the fragmented landscape were rapidly selected for when patch spatial isolation increased. The evidence of such an adaptive answer to habitat fragmentation suggests that dispersal mortality is a key factor for metapopulation persistence in fragmented landscapes. We emphasise that landscape spatial configuration and patch isolation have to be taken into account in the debate about large-scale conservation strategies.  相似文献   

3.
Despite the considerable evidence showing that dispersal between habitat patches is often asymmetric, most of the metapopulation models assume symmetric dispersal. In this paper, we develop a Monte Carlo simulation model to quantify the effect of asymmetric dispersal on metapopulation persistence. Our results suggest that metapopulation extinctions are more likely when dispersal is asymmetric. Metapopulation viability in systems with symmetric dispersal mirrors results from a mean field approximation, where the system persists if the expected per patch colonization probability exceeds the expected per patch local extinction rate. For asymmetric cases, the mean field approximation underestimates the number of patches necessary for maintaining population persistence. If we use a model assuming symmetric dispersal when dispersal is actually asymmetric, the estimation of metapopulation persistence is wrong in more than 50% of the cases. Metapopulation viability depends on patch connectivity in symmetric systems, whereas in the asymmetric case the number of patches is more important. These results have important implications for managing spatially structured populations, when asymmetric dispersal may occur. Future metapopulation models should account for asymmetric dispersal, while empirical work is needed to quantify the patterns and the consequences of asymmetric dispersal in natural metapopulations.  相似文献   

4.
The regional persistence of species subject to local population colonization and extinction necessarily depends on how landscape features and disturbance affect metapopulation dynamics. Here, we characterize the metapopulation structure and short-term dynamics ofPolygonella basiramia. This rare, short-lived perennial herb is endemic to Florida scrublands and lacks a seed bank. Fires create the open sand gaps within a shrub matrix that support this species but also kill established plants. Thus, persistence depends on frequent colonization of unoccupied gaps. We are monitoring population dynamics within and among 1204 gaps distributed among 19 shrub patches. Considerable subpopulation turnover is evident at the gap level with rates of gap extinction exceeding rates of colonization in the first year. Whether declines in overall abundance continue is likely to depend on patterns of disturbance and regional stochasticity in this dynamic landscape.Polygonella is more likely to occupy larger and less isolated gaps, demonstrating that landscape features and disturbance strongly affect metapopulation dynamics. BecausePolygonella basiramia displays characteristics, occupancy patterns, and turnover dynamics consistent with metapopulation theory, it represents a model system for studying plant metapopulations.  相似文献   

5.
Many studies of metapopulation models assume that spatially extended populations occupy a network of identical habitat patches, each coupled to its nearest neighbouring patches by density-independent dispersal. Much previous work has focused on the temporal stability of spatially homogeneous equilibrium states of the metapopulation, and one of the main predictions of such models is that the stability of equilibrium states in the local patches in the absence of migration determines the stability of spatially homogeneous equilibrium states of the whole metapopulation when migration is added. Here, we present classes of examples in which deviations from the usual assumptions lead to different predictions. In particular, heterogeneity in local habitat quality in combination with long-range dispersal can induce a stable equilibrium for the metapopulation dynamics, even when within-patch processes would produce very complex behaviour in each patch in the absence of migration. Thus, when spatially homogeneous equilibria become unstable, the system can often shift to a different, spatially inhomogeneous steady state. This new global equilibrium is characterized by a standing spatial wave of population abundances. Such standing spatial waves can also be observed in metapopulations consisting of identical habitat patches, i.e. without heterogeneity in patch quality, provided that dispersal is density dependent. Spatial pattern formation after destabilization of spatially homogeneous equilibrium states is well known in reaction–diffusion systems and has been observed in various ecological models. However, these models typically require the presence of at least two species, e.g. a predator and a prey. Our results imply that stabilization through spatial pattern formation can also occur in single-species models. However, the opposite effect of destabilization can also occur: if dispersal is short range, and if there is heterogeneity in patch quality, then the metapopulation dynamics can be chaotic despite the patches having stable equilibrium dynamics when isolated. We conclude that more general metapopulation models than those commonly studied are necessary to fully understand how spatial structure can affect spatial and temporal variation in population abundance.  相似文献   

6.
The importance of considering spatially-correlated extinction in metapopulation viability analyses was investigated using a model of the population dynamics of Gymnobelideus leadbeateri McCoy (Leadbeater's Possum). Fire caused local extinction of G. leadbeateri and induced changes in the suitability of the habitat over a period of decades and centuries. Spatially-correlated fires, in which the correlation between the incidence of fire declines with distance, and uniformly-correlated fires were simulated. The predicted risk of metapopulation extinction increased: (i) as the variance in the number of fires each year increased, (ii) as the mean fire interval decreased, and (iii) as the mean dispersal distance decreased. Incorporating spatial correlation in the incidence of fires between patches had little effect on the results, provided the variance in the number of fires per year remained the same and fires modified habitat quality. The predicted risk of metapopulation extinction was greater for spatially-correlated fires than for uniformly-correlated fires when fires only caused local extinction but did not change habitat suitability. Incorporating spatial correlation in the incidence of fire within patches, which allowed partial burning of patches, reduced the predicted risk of extinction. This effect was only slight when patches were smaller than about 50 ha. The results of our simulations demonstrate the importance of considering correlations in disturbance regimes in metapopulation models, especially if these models are used to assist the design of nature reserves.  相似文献   

7.
Eco‐evolutionary dynamics are now recognized to be highly relevant for population and community dynamics. However, the impact of evolutionary dynamics on spatial patterns, such as the occurrence of classical metapopulation dynamics, is less well appreciated. Here, we analyse the evolutionary consequences of spatial network connectivity and topology for dispersal strategies and quantify the eco‐evolutionary feedback in terms of altered classical metapopulation dynamics. We find that network properties, such as topology and connectivity, lead to predictable spatio‐temporal correlations in fitness expectations. These spatio‐temporally stable fitness patterns heavily impact evolutionarily stable dispersal strategies and lead to eco‐evolutionary feedbacks on landscape level metrics, such as the number of occupied patches, the number of extinctions and recolonizations as well as metapopulation extinction risk and genetic structure. Our model predicts that classical metapopulation dynamics are more likely to occur in dendritic networks, and especially in riverine systems, compared to other types of landscape configurations. As it remains debated whether classical metapopulation dynamics are likely to occur in nature at all, our work provides an important conceptual advance for understanding the occurrence of classical metapopulation dynamics which has implications for conservation and management of spatially structured populations.  相似文献   

8.
A recent study [Harding and McNamara, 2002. A unifying framework for metapopulation dynamics. Am. Nat. 160, 173-185] presented a unifying framework for the classic Levins metapopulation model by incorporating several realistic biological processes, such as the Allee effect, the Rescue effect and the Anti-rescue effect, via appropriate modifications of the two basic functions of colonization and extinction rates. Here we embed these model extensions on a spatially explicit framework. We consider population dynamics on a regular grid, each site of which represents a patch that is either occupied or empty, and with spatial coupling by neighborhood dispersal. While broad qualitative similarities exist between the spatially explicit models and their spatially implicit (mean-field) counterparts, there are also important differences that result from the details of local processes. Because of localized dispersal, spatial correlation develops among the dynamics of neighboring populations that decays with distance between patches. The extent of this correlation at equilibrium differs among the metapopulation types, depending on which processes prevail in the colonization and extinction dynamics. These differences among dynamical processes become manifest in the spatial pattern and distribution of “clusters” of occupied patches. Moreover, metapopulation dynamics along a smooth gradient of habitat availability show significant differences in the spatial pattern at the range limit. The relevance of these results to the dynamics of disease spread in metapopulations is discussed.  相似文献   

9.
Habitat quality and habitat geometry are two crucial factors driving metapopulation dynamics. However, their intricacy has prevented so far a reliable test of their relative impact on local population dynamics and persistence. Here we report on a long‐term study in which we manipulated habitat quality within a butterfly metapopulation, whereas habitat geometry was kept constant. The treatment consisted in lowering the quality of certain habitat patches while others were kept untreated, using the same spatial design over years. The effect of the treatment on metapopulation dynamics was assessed by comparing residence probability and dispersal rates within the same habitat network on 11 and 6 independent butterfly generations before and after treatment, respectively. Results showed that the experimental decrease in habitat quality generated significantly higher emigration rates from treated patches. This increase was associated with a significant decrease in dispersal rates out of untreated patches, and a significant higher residence probability in these patches. The direct relation between lower habitat quality and higher dispersal propensity in treated patches was expected. However, the lower dispersal from untreated patches after treatment was opposite to the expectation of positive density dependent dispersal generally observed in butterflies. Such negative density‐dependent dispersal would allow a rapid fine‐tuning of dispersal rates to changes in habitat quality, particularly when the spatial autocorrelation of the environmental is low. Accordingly, dispersal would promote an ideal free distribution of individuals in the landscape according to their fitness expectation.  相似文献   

10.
Disturbances affect metapopulations directly through reductions in population size and indirectly through habitat modification. We consider how metapopulation persistence is affected by different disturbance regimes and the way in which disturbances spread, when metapopulations are compact or elongated, using a stochastic spatially explicit model which includes metapopulation and habitat dynamics. We discover that the risk of population extinction is larger for spatially aggregated disturbances than for spatially random disturbances. By changing the spatial configuration of the patches in the system--leading to different proportions of edge and interior patches--we demonstrate that the probability of metapopulation extinction is smaller when the metapopulation is more compact. Both of these results become more pronounced when colonization connectivity decreases. Our results have important management implication as edge patches, which are invariably considered to be less important, may play an important role as disturbance refugia.  相似文献   

11.
《Acta Oecologica》2002,23(5):287-296
Population viability analysis (PVA) and metapopulation theory are valuable tools to model the dynamics of spatially structured populations. In this article we used a spatially realistic population dynamic model to simulate the trajectory of a Proclossiana eunomia metapopulation in a network of habitat patches located in the Belgian Ardenne. Sensitivity analysis was used to evaluate the relative influence of the different parameters on the model output. We simulated habitat loss by removing a percentage of the original habitat, proportionally in each habitat patch. Additionally, we evaluated isolation and fragmentation effects by removing and dividing habitat patches from the network, respectively. The model predicted a slow decline of the metapopulation size and occupancy. Extinction risks predicted by the model were highly sensitive to environmental stochasticity and carrying capacity. For a determined level of habitat destruction, the expected lifetime of the metapopulation was highly dependent on the spatial configuration of the landscape. Moreover, when the proportion of removed habitat is above 40% of the original habitat, the loss of whole patches invariably leads to the strongest reduction in metapopulation viability.  相似文献   

12.
Toward ecologically scaled landscape indices   总被引:2,自引:0,他引:2  
Nature conservation is increasingly based on a landscape approach rather than a species approach. Landscape planning that includes nature conservation goals requires integrated ecological tools. However, species differ widely in their response to landscape change. We propose a framework of ecologically scaled landscape indices that takes into account this variation. Our approach is based on a combination of field studies of spatially structured populations (metapopulations) and model simulations in artificial landscapes. From these, we seek generalities in the relationship among species features, landscape indices, and metapopulation viability. The concept of ecological species profiles is used to group species according to characteristics that are important in metapopulations' response to landscape change: individual area requirements as the dominant characteristic of extinction risk in landscape patches and dispersal distance as the main determinant of the ability to colonize patches. The ecological profiles and landscape indices are then integrated into two ecologically scaled landscape indices (ESLI): average patch carrying capacity and average patch connectivity. The field data show that the fraction of occupied habitat patches is correlated with the two ESLI. To put the ESLI into a perspective of metapopulation persistence, we determine the viability for six ecological profiles at different degrees of habitat fragmentation using a metapopulation model and computer-generated landscapes. The model results show that the fraction of occupied patches is a good indicator for metapopulation viability. We discuss how ecological profiles, ESLI, and the viability threshold can be applied for landscape planning and design in nature conservation.  相似文献   

13.
Habitat structure increases the persistence of many extinction‐prone resource–consumer interactions. Metapopulation theory is one of the leading approaches currently used to explain why local, ephemeral populations persist at a regional scale. Central to the metapopulation concept is the amount of dispersal occurring between patches, too much or too little can result in regional extinction. In this study, the role of dispersal on the metapopulation dynamics of an over‐exploitative host–parasitoid interaction is assessed. In the absence of the parasitoid the highly vagile bruchid, Callosobruchus maculatus, can maintain a similar population size regardless of the permeability of the inter‐patch matrix and exhibits strong negative density‐dependence. After the introduction of the parasitoid the size of the bruchid population decreases with a corresponding increase in the occurrence of empty patches. In this case, limiting the dispersal of both species decouples the interaction to a greater extent and results in larger regional bruchid populations. Given the disparity between the dispersal rates of the two species, it is proposed that the more dispersive host benefits from the reduction in landscape permeability by increasing the opportunity to colonise empty patches and rescue extinction prone populations. Associated with the introduction of the parasitoid is a shift in the strength of density‐dependence as the population moves from bottom–up towards top–down regulation. The importance of local and regional scale measurements is apparent when the role of individual patches on regional dynamics is considered. By only taking regional dynamics into account the importance of dispersal regime on local dynamics is overlooked. Similarly, when local dynamics were examined, patches were found to have different influences on regional dynamics depending on dispersal regime and patch location.  相似文献   

14.
We formulated a mathematical model in order to study the joint influence of demographic and genetic processes on metapopulation viability. Moreover, we explored the influence of habitat structure, matrix quality and disturbance on the interplay of these processes. We showed that the conditions that allow metapopulation persistence under the synergistic action of genetic and demographic processes depart significantly from predictions based on a mere superposition of the effects of each process separately. Moreover, an optimal dispersal rate exists that maximizes the range of survival rates of dispersers under which metapopulation persists and at the same time allows the largest sustainable patch removal and patch‐size reduction. The relative impact of patch removal and patch‐size reduction depends both on matrix quality and the dispersal strategy of the species: metapopulation persistence is more affected by patch‐size reduction (patch removal) for low (high)‐dispersing species, in presence of a low (high) quality matrix. Avoidance of inbreeding, through increased dispersal when the rate of inbreeding in a population is large, has positive effects on low‐dispersing species, but impairs the persistence of high‐dispersing species. Finally, size heterogeneity between patches largely influences metapopulation dynamics; the presence of large patches, even at the expense of other patches being smaller, can have positive effects on persistence in particular for species of low dispersing ability.  相似文献   

15.
人类活动所引起的栖息地毁坏已成为当前物种多样性丧失的最主要的原因之一。空间显含模型相对于空间隐含模型来说,更加接近于现实,因此,通过元胞自动机,模拟了物种多样性对万年、千年、百年时间尺度人类活动所引起的栖息地毁坏的响应。研究结果表明:万年时间尺度上,物种是由强到弱的灭绝;而在千年时间尺度上,物种灭绝的序受集合种群结构的影响较大;在百年时间尺度上。物种由于栖息地毁坏过于剧烈和迅速,来不及作出响应。在栖息地完全毁坏时集体灭绝。因此,物种灭绝序不只是受竞争-侵占均衡机制的影响,还受不同时间尺度(不同速率)栖息地毁坏的影响。以及集合种群结构的影响。  相似文献   

16.
Animals can modify their environment by consumptive and physical activities such as herbivory and soil disturbance. Engineering species may create structures that long outlive them and have lasting impacts on local communities of plants and animals. Water voles, Arvicola amphibious, are rodents that visibly impact riparian plant communities by grazing on surface and root vegetation and excavating long-lasting burrow systems. This species has a metapopulation structure and occurs across patches which are subject to frequent extinction and colonization events, causing spatially heterogeneous disturbances across the landscape. Using a chronosequence of water vole occupancy in the Highlands of Scotland, we show that heterogeneity in plant community composition and structure—both within and between colony patches—was related to cumulative measures of past physical impact: burrow density and time since a patch was last occupied by voles, rather than to current indices of vole occupancy. In our sample of 107 patches monitored over 5 years, no fewer than 31 unique patch occupancy histories were found, each with potentially subtle differences in the accumulated influence of water vole herbivory and engineering. As a result, a patchwork of different plant successional stages occurs across the riparian landscape which is both created and maintained by water vole extinction-colonization dynamics. We propose that the water vole-vegetation system can be described as a metacommunity where dispersal by a higher tropic agent at the landscape scale influences the spatial dynamics of plants at the patch level.  相似文献   

17.
Population viability analysis (PVA) models incorporate spatial dynamics in different ways. At one extreme are the occupancy models that are based on the number of occupied populations. The simplest occupancy models ignore the location of populations. At the other extreme are individual-based models, which describe the spatial structure with the location of each individual in the population, or the location of territories or home ranges. In between these are spatially structured metapopulation models that describe the dynamics of each population with structured demographic models and incorporate spatial dynamics by modeling dispersal and temporal correlation among populations. Both dispersal and correlation between each pair of populations depend on the location of the populations, making these models spatially structured. In this article, I describe a method that expands spatially structured metapopulation models by incorporating information about habitat relationships of the species and the characteristics of the landscape in which the metapopulation exists. This method uses a habitat suitability map to determine the spatial structure of the metapopulation, including the number, size, and location of habitat patches in which subpopulations of the metapopulation live. The habitat suitability map can be calculated in a number of different ways, including statistical analyses (such as logistic regression) that find the relationship between the occurrence (or, density) of the species and independent variables which describe its habitat requirements. The habitat suitability map is then used to calculate the spatial structure of the metapopulation, based on species-specific characteristics such as the home range size, dispersal distance, and minimum habitat suitability for reproduction. Received: April 1, 1999 / Accepted: October 29, 1999  相似文献   

18.
Metapopulation models are widely used to study species that occupy patchily distributed habitat, but are rarely applied to migratory species, because of the difficulty of identifying demographically independent subpopulations. Here, we extend metapopulation theory to describe the directed seasonal movement of migratory populations between two sets of habitat patches, breeding and non-breeding, with potentially different colonization and extinction rates between patch types. By extending the classic metapopulation model, we show that migratory metapopulations will persist if the product of the two colonization rates exceeds the product of extinction rates. Further, we develop a spatially realistic migratory metapopulation model and derive a landscape metric-the migratory metapopulation capacity-that determines persistence. This new extension to metapopulation theory introduces an important tool for the management and conservation of migratory species and may also be applicable to model the dynamics of two host-parasite systems.  相似文献   

19.
We study the evolution of dispersal rates in a two patch metapopulation model. The local dynamics in each patch are given by difference equations, which, together with the rate of dispersal between the patches, determine the ecological dynamics of the metapopulation. We assume that phenotypes are given by their dispersal rate. The evolutionary dynamics in phenotype space are determined by invasion exponents, which describe whether a mutant can invade a given resident population. If the resident metapopulation is at a stable equilibrium, then selection on dispersal rates is neutral if the population sizes in the two patches are the same, while selection drives dispersal rates to zero if the local abundances are different. With non-equilibrium metapopulation dynamics, non-zero dispersal rates can be maintained by selection. In this case, and if the patches are ecologically identical, dispersal rates always evolve to values which induce synchronized metapopulation dynamics. If the patches are ecologically different, evolutionary branching into two coexisting dispersal phenotypes can be observed. Such branching can happen repeatedly, leading to polymorphisms with more than two phenotypes. If there is a cost to dispersal, evolutionary cycling in phenotype space can occur due to the dependence of selection pressures on the ecological attractor of the resident population, or because phenotypic branching alternates with the extinction of one of the branches. Our results extend those of Holt and McPeek (1996), and suggest that phenotypic branching is an important evolutionary process. This process may be relevant for sympatric speciation.  相似文献   

20.
Karin Johst  Martin Drechsler 《Oikos》2003,103(3):449-456
The survival of species in dynamic landscapes (characterised by patch destruction and subsequent regeneration) depends on both the species' attributes and the disturbance pattern. Using a spatially explicit model we explored how the mean time to extinction of a metapopulation depends on the spatial correlation of patch destruction in relation to the population growth and dispersal abilities of species. Two contrasting answers are possible. On the one hand, increasing spatial correlation of patch destruction increases the spatial correlation of population growth and this is known to decrease metapopulation persistence. On the other hand, spatially correlated patch destruction and regeneration can lead to clustered habitat patches and this is known to increase metapopulation persistence. Therefore, we hypothesised that some species are better off under spatially correlated and alternatively uncorrelated disturbance regimes. However, contrary to this hypothesis, in all kinds of cases spatial correlation reduced metapopulation persistence. We found this to be due to the fact that the spatial correlation of patch destruction causes increasing temporal fluctuations in the regional carrying capacity of the metapopulation and is hence generally disadvantageous for long-term persistence. The main consequence for conservation biology is that reducing spatial correlation in disturbances is likely to be a reliable strategy in a dynamic landscape that will benefit practically all species with a low risk of adverse side effects .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号