首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Immucillins are logically designed transition-state analogue inhibitors of mammalian purine nucleoside phosphorylase (PNP) that induce purine-less death of Plasmodium falciparum in cultured erythrocytes (Kicska, G. A., Tyler, P. C., Evans, G. B., Furneaux, R. H., Schramm, V. L., and Kim, K. (2002) J. Biol. Chem. 277, 3226-3231). PNP is present at high levels in human erythrocytes and in P. falciparum, but the Plasmodium enzyme has not been characterized. A search of the P. falciparum genome data base yielded an open reading frame similar to the PNP from Escherichia coli. PNP from P. falciparum (P. falciparum PNP) was cloned, overexpressed in E. coli, purified, and characterized. The primary amino acid sequence has 26% identity with E. coli PNP, has 20% identity with human PNP, and is phylogenetically unique among known PNPs with equal genetic distance between PNPs and uridine phosphorylases. Recombinant P. falciparum PNP is catalytically active for inosine and guanosine but is less active for uridine. The immucillins are powerful inhibitors of P. falciparum PNP. Immucillin-H is a slow onset tight binding inhibitor with a K(i)* value of 0.6 nm. Eight related immucillins are also powerful inhibitors with dissociation constants from 0.9 to 20 nm. The K(m)/K(i)* value for immucillin-H is 9000, making this inhibitor the most powerful yet reported for P. falciparum PNP. The PNP from P. falciparum differs from the human enzyme by a lower K(m) for inosine, decreased preference for deoxyguanosine, and reduced affinity for the immucillins, with the exception of 5'-deoxy-immucillin-H. These properties of P. falciparum PNP are consistent with a metabolic role in purine salvage and provide an explanation for the antibiotic effect of the immucillins on P. falciparum cultured in human erythrocytes.  相似文献   

3.
Human malaria infections resulting from Plasmodium falciparum have become increasingly difficult to treat due to the emergence of drug-resistant parasites. The P. falciparum purine salvage enzyme purine nucleoside phosphorylase (PfPNP) is a potential drug target. Previous studies, in which PfPNP was targeted by transition state analogue inhibitors, found that those inhibiting human PNP and PfPNPs killed P. falciparum in vitro. However, many drugs have off-target interactions, and genetic evidence is required to demonstrate single target action for this class of potential drugs. We used targeted gene disruption in P. falciparum strain 3D7 to ablate PNP expression, yielding transgenic 3D7 parasites (Deltapfpnp). Lysates of the Deltapfpnp parasites showed no PNP activity, but activity of another purine salvage enzyme, adenosine deaminase (PfADA), was normal. When compared with wild-type 3D7, the Deltapfpnp parasites showed a greater requirement for exogenous purines and a severe growth defect at physiological concentrations of hypoxanthine. Drug assays using immucillins, specific transition state inhibitors of PNP, were performed on wild-type and Deltapfpnp parasites. The Deltapfpnp parasites were more sensitive to PNP inhibitors that bound hPNP tighter and less sensitive to MT-ImmH, an inhibitor with 100-fold preference for PfPNP over hPNP. The results demonstrate the importance of purine salvage in P. falciparum and validate PfPNP as the target of immucillins.  相似文献   

4.
Design of purine nucleoside phosphorylase inhibitors   总被引:2,自引:0,他引:2  
Purine nucleoside phosphorylase inhibitors hold promise as specific immunosuppressive, anti-T cell leukemic, and antiuricopoietic agents. The best inhibitors available that are biologically active have Ki values from 10(-6) to 10(-7) M and fall into two categories: noncleavable nucleosides preferably iodinated at the C-5' position and C-8-substituted guanine or acycloguanosines. More potent inhibition is shown by phosphorylated acyclonucleosides that function as multisubstrate analogs, but these compounds are excluded from cells. The X-ray analysis of the human erythrocytic enzyme is beginning to reveal the nature of the active site and to explain the structure-activity relationships that have been established with analog substrates and inhibitors.  相似文献   

5.
Purine nucleoside phosphorylase (PNP) catalyzes reversible phosphorolysis of purine deoxy- and ribonucleosides with formation (d)Rib-1-P and corresponding bases. PNP plays a leading role in the cell metabolism of nucleosides and nucleotides, as well as in maintaining the immune status of an organism. The major aim of the majority of studies on the PNP is the detection of highly effective inhibitors of this enzyme, derivatives of purine nucleosides used in medicine as immunosuppressors, which are essential for creating selective T-cell immunodeficiency in a human body for organ and tissue transplantation. The present work is devoted to the study of the effects of some synthetic derivatives of purine nucleosides on activity of highly purified PNP from rabbit spleen and also from human healthy and tumor tissues of lung and kidneys. Purine nucleoside analogues modified at various positions of both the heterocyclic base and carbohydrate residues have been investigated. Several compounds, including 8-mercapto-acyclovir, 8-bromo-9-(3,4-hydroxybutyl)guanine, which demonstrated potent PNP inhibition, could be offered for subsequent study as immunosuppressors during organ and tissue transplantation.  相似文献   

6.
7.
Summary A brief genetic report is given on a family with a child affected by nucleoside phosphorylase deficiency. Our observations confirm the genetic heterogeneity of this enzyme deficiency which is inherited as a mendelian autosomal trait.  相似文献   

8.
Purine nucleoside phosphorylase (EC 2.4.2.1) from bovine spleen is allosterically regulated. With the substrate inosine the enzyme displayed complex kinetics: positive cooperativity vs inosine when this substrate was close to physiological concentrations, negative cooperativity at inosine concentrations greater than 60 microM, and substrate inhibition at inosine greater than 1 mM. No cooperativity was observed with the alternative substrate, guanosine. The activity of purine nucleoside phosphorylase toward the substrate inosine was sensitive to the presence of reducing thiols; oxidation caused a loss of cooperativity toward inosine, as well as a 10-fold decreased affinity for inosine. The enzyme also displayed negative cooperativity toward phosphate at physiological concentrations of Pi, but oxidation had no effect on either the affinity or cooperativity toward phosphate. The importance of reduced cysteines on the enzyme is thus specific for binding of the nucleoside substrate. The enzyme was modestly inhibited by the pyrimidine nucleotides CTP (Ki = 118 microM) and UTP (Ki = 164 microM), but showed greater sensitivity to 5-phosphoribosyl-1-pyrophosphate (Ki = 5.2 microM).  相似文献   

9.
Nucleotide analogue inhibitors of purine nucleoside phosphorylase   总被引:2,自引:0,他引:2  
The diphosphate of the antiherpetic agent acyclovir [9-[(2-hydroxyethoxy)methyl]guanine] has been shown to inhibit purine nucleoside phosphorylase with unique potency (Tuttle, J. V., and Krenitsky, T. A. (1984) J. Biol. Chem. 259, 4065-4069). A major factor contributing to the superior inhibition by this diphosphate over the corresponding mono- and triphosphates is revealed here. Homologues of acyclovir mono- and diphosphate that extend the ethoxy moiety by one to four methylene groups were synthesized. These homologues were evaluated for their ability to inhibit human purine nucleoside phosphorylase. Within the diphosphate series, the Ki values increased progressively with increasing chain length. With the monophosphates, the Ki values reached a minimum with the homologue containing a pentoxy moiety. A plot of chain length versus Ki values for both mono- and diphosphates showed that both series had similar optimal distances between the aminal carbon and the terminal oxygen anion. Monophosphates with optimal positioning were somewhat less potent than diphosphates with similar positioning. Nevertheless, it was clear that a major factor in determining potency of inhibition was the distance of the terminal phosphate from the guanine moiety.  相似文献   

10.
11.
We have developed a new assay for purine nucleoside phosphorylase which is based on the release of tritium when [2-3H]inosine is used as the substrate and the reaction is coupled with xanthine oxidase. After the reaction is terminated, residual [2-3H]inosine is adsorbed on charcoal and the supernatant solution is assayed for radioactivity by liquid scintillation spectrometry. The new method gave results indistinguishable from those obtained by spectrophotometric determination of uric acid produced by the phosphorylase-xanthine oxidase-coupled reaction or by radioassay of chromatographically isolated [8-14C]hypoxanthine when [8-14C]inosine was used as substrate. The new method is faster than those involving chromatographic isolation of products. In comparison with spectrophotometric methods, it not only requires less manual time, but it also has the advantage that it can be used to study inhibitors whose ultraviolet absorption might interfere with spectrophotometric determination of uric acid.  相似文献   

12.
13.
Human purine nucleoside phosphorylase has been submitted to intensive structure-based design of inhibitors, most of them using low-resolution structures of human PNP. Recently, several structures of human PNP have been reported, which allowed redefinition of the active site and understanding of the structural basis for inhibition of PNP by acyclovir and immucillin-H. Based on previously solved human PNP structures, we proposed here a new catalytic mechanism for human PNP, which is supported by crystallographic studies and explains previously determined kinetic data.  相似文献   

14.
15.
The kinetic parameters (Km and Vmax) of sugar-modified analogues of inosine and guanosine have been determined with human erythrocytic purine nucleoside phosphorylase (PNP). Steric alterations at the 2' and 3' positions greatly lessened or abolished substrate activity. However, the 5'-deoxy- and 2',5'-dideoxy-beta-D-ribofuranosyl and the alpha-L-lyxosyl analogues were good substrates, indicating that the 5'-hydroxyl and the orientation of the 5'-hydroxy-methyl group are not important for binding. The sugar phosphate analogue, 5-deoxyribose 1-phosphate, was synthesized from 5'-deoxyinosine with immobilized PNP, and its presence was verified by using it in the enzymic synthesis of 5'-deoxyguanosine. The adenosine versions of the 5'-modified analogues were also found to react with adenosine deaminase, albeit at less than 1% of Vmax.  相似文献   

16.
Purine nucleoside phosphorylase from Plasmodium falciparum (PfPNP) is an anti-malarial target based on the activity of Immucillins. The crystal structure of PfPNP.Immucillin-H (ImmH).SO(4) reveals a homohexamer with ImmH and SO(4) bound at each catalytic site. A solvent-filled cavity close to the 5'-hydroxyl group of ImmH suggested that PfPNP can accept additional functional groups at the 5'-carbon. Assays established 5'-methylthioinosine (MTI) as a substrate for PfPNP. MTI is not found in human metabolism. These properties of PfPNP suggest unusual purine pathways in P. falciparum and provide structural and mechanistic foundations for the design of malaria-specific transition state analogue inhibitors. 5'-Methylthio-Immucillin-H (MT-ImmH) was designed to resemble the transition state of PfPNP and binds to PfPNP and human-PNP with K(d) values of 2.7 and 303 nm, respectively, to give a discrimination factor of 112. MT-ImmH is the first inhibitor that favors PfPNP inhibition. The structure of PfPNP.MT-ImmH.SO(4) shows that the hydrophobic methylthio group inserts into a hydrophobic region adjacent to the more hydrophilic 5'-hydroxyl binding site of ImmH. The catalytic features of PfPNP indicate a dual cellular function in purine salvage and polyamine metabolism. Combined metabolic functions in a single enzyme strengthen the rationale for targeting PfPNP in anti-malarial action.  相似文献   

17.
Purine and pyrimidine metabolism was compared in erythrocytes from three patients from two families with purine nucleoside phosphorylase deficiency and T-cell immunodeficiency, one heterozygote subject for this enzyme deficiency, one patient with a complete deficiency of hypoxanthine-guanine phosphoribosyltransferase, and two normal subjects. The erythrocytes from the heterozygote subject were indistinguishable from the normal erythrocytes. The purine nucleoside phosphorylase deficient erythrocytes had a block in the conversion of inosine to hypoxanthine. The erythrocytes with 0.07% of normal purine nucleoside phosphorylase activity resembled erythrocytes with hypoxanthine-guanine phosphoribosyltransferase deficiency by having an elevated intracellular concentration of PP-ribose-P, increased synthesis of PP-ribose-P, and an elevated rate of carbon dioxide release from orotic acid during its conversion to UMP. Two hypotheses to account for the associated immunodeficiency—that the enzyme deficiency leads to a block of PP-ribose-P synthesis or inhibition of pyrimidine synthesis—could not be supported by observations in erythrocytes from both enzyme-deficient families.This work was supported by U.S. Public Health Service Grant AM 19674 and 5 M01 RR 42 and by a Grant-In-Aid from American Heart Association (77-849) and with funds contributed in part by the Michigan Heart Association. N.L.E. is a Rheumatology Fellow from the Rackman Arthritis Research Unit supported by Training Grant USPHS AM 07080.  相似文献   

18.
The yeast YLR209c (PNP1) gene encodes a protein highly similar to purine nucleoside phosphorylases. This protein specifically metabolized inosine and guanosine. Disruption of PNP1 led to inosine and guanosine excretion in the medium, thus showing that PNP1 plays an important role in the metabolism of these purine nucleosides in vivo.  相似文献   

19.
Genetic control of immunity to Plasmodium yoelii sporozoites   总被引:9,自引:0,他引:9  
Using a rodent malaria system, we have shown that protective immunity to the preerythrocytic stages of malaria is genetically controlled by MHC and non-MHC genes. Ten congenic strains of mice were immunized with irradiated sporozoites of Plasmodium yoelii. When challenged with viable sporozoites, only two strains had a high proportion of animals that did not develop blood stage infections. Immunity did not correlate with antisporozoite antibody levels. Two protective mechanisms exist determined by non-H-2 genes, and each mechanism is further controlled by H-2-linked Ir genes. On the BALB background only H-2d mice are protected, and protection is abolished by depleting CD8+ T cells. In contrast, on the B10 background only H-2q mice are strongly protected, and protection is not affected by CD8+ T cell depletion. If similar complex genetic regulation of immunity occurs in the human malarias, it will be a major hurdle for vaccine development.  相似文献   

20.
Purine nucleoside phosphorylase (PNP) (EC.2.4.2.1) is an enzyme that catalyzes the cleavage of N-ribosidic bonds of the purine ribonucleosides and 2-deoxyribonucleosides in the presence of inorganic orthophosphate as a second substrate. This enzyme is involved in purine-salvage pathway and has been proposed as a promising target for design and development of antimalarial and antibacterial drugs. Recent elucidation of the three-dimensional structure of PNP by X-ray protein crystallography left open the possibility of structure-based virtual screening initiatives in combination with molecular dynamics simulations focused on identification of potential new antimalarial drugs. Most of the previously published molecular dynamics simulations of PNP were carried out on human PNP, a trimeric PNP. The present article describes for the first time molecular dynamics simulations of hexameric PNP from Plasmodium falciparum (PfPNP). Two systems were simulated in the present work, PfPNP in ligand free form, and in complex with immucillin and sulfate. Based on the dynamical behavior of both systems the main results related to structural stability and protein-drug interactions are discussed.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号