首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
There have been no studies of the effects of soil P deficiency on pearl millet (Pennisetum glaucum (L.) R. Br.) photosynthesis, despite the fact that P deficiency is the major constraint to pearl millet production in most regions of West Africa. Because current photosynthesis-based crop simulation models do not explicitly take into account P deficiency effects on leaf photosynthesis, they cannot predict millet growth without extensive calibration. We studied the effects of soil addition on leaf P content, photosynthetic rate (A), and whole-plant dry matter production (DM) of non-water-stressed, 28 d pearl millet plants grown in pots containing 6.00 kg of a P-deficient soil. As soil P addition increased from 0 to 155.2 mg P kg–1 soil, leaf P content increased from 0.65 to 7.0 g kg–1. Both A and DM had maximal values near 51.7 mg P kg–1 soil, which corresponded to a leaf P content of 3.2 g kg–1. Within this range of soil P addition, the slope of A plotted against stomatal conductance (gs) tripled, and mean leaf internal CO2 concentration ([CO2]i) decreased from 260 to 92 L L–1, thus indicating that P deficiency limited A through metabolic dysfunction rather than stomatal regulation. Light response curves of A, which changed markedly with P leaf content, were modelled as a single substrate, Michaelis-Menten reaction, using quantum flux as the substrate for each level of soil P addition. An Eadie-Hofstee plot of light response data revealed that both KM, which is mathematically equivalent to quantum efficiency, and Vmax, which is the light-saturated rate of photosynthesis, increased sharply from leaf P contents of 0.6 to 3 g kg–1, with peak values between 4 and 5 g P kg–1. Polynomial equations relating KM and Vmax, to leaf P content offered a simple and attractive way of modelling photosynthetic light response for plants of different P status, but this approach is somewhat complicated by the decrease of leaf P content with ontogeny.  相似文献   

2.
Summary Six mycorrhizal fungi were tested as inoculants for pearl millet (Pennisetum americanum Leeke) grown in pots maintained in a greenhouse. VAM fungi varied in their ability to stimulate plant growth and phosphorus uptake. Inoculation withGigaspora margarita, G. calospora andGlomus fasciculatum increased shoot drymatter 1.3 fold over uninoculated control. In another pot trial, inoculation withGigaspora calospora andGlomus fasciculatum resulted in dry matter and phosphorus uptake equivalent to that produced by adding phosphorus at 8 kg/ha.The influence of inoculatingGigaspora calospora on pearl millet at different levels of phosphorus fertilizer (0 to 60 kg P/ha) as triple superphosphate in sterile and unsterile alfisol soil was also studied. In sterile soil, mycorrhizal inoculation increased dry matter and phosphorus uptake at levels less than 20 kg/ha. At higher P levels the mycorrhizal effect was decreased. These studies performed in sterilized soil suggest that inoculation of pearl millet with efficient VAM fungi could be extremely useful in P deficient soils. However, its practical utility depends on screening and isolation of fungal strains which perform efficiently in natural (unsterilized) field conditions.  相似文献   

3.
Pasture swards containing perennial ryegrass (Lolium perenne L.) alone or with one of five different white clover (Trifolium repens L.) cultivars were examined for production and transfer of fixed nitrogen (N) to grass under dairy cow grazing. Grass-only swards produced 21% less than mixed clover-grass swards during the second year after sowing. Production from grass-only plots under a mowing and clipping removal regime was 44% less than from grass-only plots under grazing. Much of this difference could be attributed to N transfer. In swards without clover, the ryegrass component also decreased in favour of other grasses.The average amount of fixed N in herbage from all clover cultivars was 269 kg N ha–1 yr–1. Above-ground transfer of fixed N to grasses (via cow excreta) was estimated at 60 kg N ha–1 yr–1. Below-ground transfer of fixed N to grasses was estimated at 70 kg N ha–1 yr–1 by 15N dilution and was similar for all clover cultivars. Thus, about 50% of grass N was met by transfer of fixed N from white clover during the measurement year. Short-term measurements using a 15N foliar-labelling method indicated that below-ground N transfer was largest during dry summer conditions.  相似文献   

4.
The response to delayed harvest of fungal and mycotoxin contamination of grain of the pearl millet hybrid HGM 100 was examined in 1992 and 1993. Samples of grain were assayed from seven plantings at locations near Tifton, Georgia, USA. Grain was harvested at 30, 40, and 50 days after anthesis and evaluated for infection byFusarium species andAspergillus flavus, and mycotoxin contamination. Mean isolation frequencies ofF. semitectum (35.6%) andF. chlamydosporum (17.2%) increased linearly with delayed harvest.Fusarium moniliforme andF. equisiti were infrequently isolated (<0.5%) and did not increase in the grain when harvest was delayed. Low mean concentrations of zearalenone (0.17 ppm), nivalenol (0.42 ppm), and deoxynivalenol (0.01 ppm) were detected but were not affected by delayed harvest. Isolation frequencies ofF. chlamydosporum andF. equiseti were correlated (P=0.07) with levels of nivalenol.Aspergillus flavus was not isolated from the grain, and aflatoxin concentrations averaged 1.9 ppb.  相似文献   

5.
6.
Brück  H.  Sattelmacher  B.  Payne  W.A. 《Plant and Soil》2003,251(1):175-185
Root parameters are important traits for the acquisition of nutrients and water under resource-limited conditions. In order to investigate the extent of varietal differences in rooting parameters in pearl millet, we compared a total of eight pearl millet varieties in two experiments (ridging and traditional sowing) over four years at the ICRISAT Sahelian Centre, Niger. We found substantial genotypic variation for root length density (RLD), root dry matter, and total root length (RL), but not for specific root length, depth of rooting, or partitioning of roots between topsoil and subsoil (>20 cm depth). RL showed a highly dynamic pattern over the growing season. RL and shoot dry matter were positively correlated over P supplies and contrasting levels of field productivity. The relationship between RL and grain yield as well as harvest index were less clear. The root fraction responded to variation in soil productivity, increasing from roughly 20% under high productivity to more than 40% at low productivity, but we found no evidence of varietal differences in this trait despite pronounced differences in maturity and plant stature. Identification of pearl millet varieties suited for growth under low input conditions in south-west Niger can potentially make use of existing genotypic variability in root parameters, but we suggest that, due to high variability for root traits, indirect selection for shoot parameters (e.g., number of stems) is more promising than direct selection for RLD or RL.  相似文献   

7.
Correlation and path-coefficient analyses have been successful tools in developing selection criteria. Since increased seed yield is an important goal in our pearl millet x elephantgrass [Pennisetum glaucum (L.) R.Br. x P. purpureum Schum.] hexaploid breeding program, we used correlation and path-coefficient analyses on seed data. This study was conducted to develop appropriate selection criteria by determining the direct and indirect effects of seed-yield components on seed yield plant-1. Number of tillers plant-1, panicles tiller-1, seeds panicle-1, 100-seed weight, and seed yield plant-1, were estimated for individual plants in seven families. Phenotypic (rp) and genetic correlations (rg) were calculated, and path analyses (phenotypic and genetic) were carried out according to predetermined causal relationships. Phenotypic and genetic correlations differed in several cases due to large environmental variance and covariance. Phenotypically, all components were positively and significantly associated with seed yield plant-1. Genotypically, only seeds panicle-1 and 100-seed weight were significantly correlated. These two components were also positively correlated (r p=0.55, r g=0.63), so simultaneous improvement for both components would be feasible. Panicles tiller-1 and seeds panicle-1 were negatively correlated (r g=-0.97). In the path analyses, all direct effects of the components on seed yield plant-1 were positive. Phenotypic indirect effects were not as important as genetic indirect effects. The components seeds panicle-1 and 100-seed weight influenced seed yield plant-1 the greatest, both directly and indirectly.Florida Agricultural Experimental Station Journal Series No. R-03339  相似文献   

8.
Among the various available sources of male-sterile cytoplasm in pearl millet [Pennisetum glaucum (L.) R.Br.], the A1 source has been exploited the most for the breeding of commercial F1 hybrids. The effect of this source on the combining ability (CA) for smut severity was studied since it is the CA that determines the performance of hybrids. The effect was estimated by comparing the CA estimates of 5 pairs of lines and 35 pairs of crosses with and without A1 cytoplasm. The cytoplasm showed either a significantly desirable or at least no adverse effect on the CA of 4 out of the 5 line pairs and 56 out of 70 pairs of comparison of crosses in two environments. The differential effect of cytoplasm in some pairs might be due to its interaction with nuclear genes. These results further substantiated that the A1 cytoplasm is not linked with increased smut severity in pearl millet hybrids.  相似文献   

9.
A pot experiment was carried out with pearl millet (Pennisetum americanum [L.] Leeke) growing in a sandy soil in which the upper (topsoil) and lower (subsoil) parts of the pots were separated by a perlite layer to prevent capillary water movement. Using microtensiometers a study was made to establish whether it was possible to measure hydraulic lift by which the upper part of the soil was rewetted when water was supplied exclusively to the lower part of the soil.Hydraulic lift occurred during the first seven days of the period of measurement, with a maximum water release to the soil of 2.7 Vol. % during one night (equivalent to 10.8 mL water in the top 10 cm of the soil profile). This magnitude was obtained at very high root length densities, so that water release from the roots would be expected to be much smaller under field conditions.Hydraulic lift ceased when the soil matric potential in the topsoil dropped below-10 kPa at the end of the light period and could not be re-established, neither by extending the dark period, nor after rewatering the topsoil. The disappearance of hydraulic lift could be explained in part through osmotic adaptation of plant roots and, thus prevention of water release from the roots in the topsoil. It is concluded that hydraulic lift may affect nutrient uptake from drying topsoil by extending the time period favourable for uptake from the topsoil.  相似文献   

10.
The effects of decomposing peach root residues in soil on peach growth were determined in two pot experiments. In the first, peach root residues, despite their high C:N ratio and lignin content, largely decomposed under experimental conditions, leading to an immobilization of inorganic N. Shoot growth of peach seedlings was depressed by the addition of peach root residues, an effect that depended on their size and concentration: fine-textured root fragments (0.45–1.00 mm) resulted in more severe effects than medium sized ones (2–8 mm), while growth depression occurred only at concentrations higher than 0.35%. Peach root growth was depressed by root residues regardless of their size and amount. In the second experiment, where nitrogen was added to all pots to minimize the effects of immobilization of N during decomposition of root fragments, the growth of peach roots in residue-supplemented soil almost stopped. Pre-planting phosphate enrichment was very effective in stimulating growth of peach in virgin soil but did not offset the depression caused by peach root residues. It thus appears that besides mineral deficiencies, there exist alternative explantations of poor growth of peach in replant soils, including growth-inhibiting substances from decomposing root residues.  相似文献   

11.
Transgenic pearl millet lines expressing pin gene—exhibiting high resistance to downy mildew pathogen, Sclerospora graminicola—were produced using particle-inflow-gun (PIG) method. Shoot-tip-derived embryogenic calli were co-bombarded with plasmids containing pin and bar genes driven by CaMV 35S promoter. Bombarded calli were cultured on MS medium with phosphinothricin as a selection agent. Primary transformants 1T0, 2T0, and 3T0 showed the presence of both bar and pin coding sequences as evidenced by PCR and Southern blot analysis, respectively. T1 progenies of three primary transformants, when evaluated for downy mildew resistance, segregated into resistant and susceptible phenotypes. T1 plants resistant to downy mildew invariably exhibited tolerance to Basta suggesting co-segregation of pin and bar genes. Further, the downy mildew resistant 1T1 plants were found positive for pin gene in Southern and Northern analyses thereby confirming stable integration, expression, and transmission of pin gene. 1T2 progenies of 1T0 conformed to dihybrid segregation of 15 resistant:1 susceptible plants.  相似文献   

12.
Plant growth and phosphorus (P) uptake of two selections of rye (Secale cereale L.) differing in length of root hairs, in response to mycorrhizal infection were investigated. Rye plants with short root hairs (SRH) had a greater length of root infected by Glomus intraradices (up to 32 m pot–1) than those with long root hairs (LRH) (up to 10 m pot–1). Application of P decreased the percentage of root length infected in both selections. In low-P soil, mycorrhizal infection increased shoot and root P concentration, especially in LRH plants. Generally, LRH had higher shoot dry weight than SRH plants. P uptake was increased both by LRH and by mycorrhizal infection. Differences in specific P uptake and P utilization efficiency between SRH and LRH plants were observed in non-mycorrhizal plants. With low P supply, P utilization efficiency (dry matter yield per unit of P taken up) of LRH plants increased with time. However, mycorrhizal infection reduced P utilization efficiency, particularly of SRH plants. SRH plants, which were agronomically less efficient (i.e. low dry matter yield at low P supply) were more responsive to either mycorrhizal infection or P addition than the LRH plants. No interaction was observed between mycorrhizal infection and root hair length.  相似文献   

13.
Summary Growth and phosphorus uptake of pearl millet (Pennisetum americanum) on an unsterile, phosphorus-deficient soil was improved by the seed inoculation withAzospirillum brasilense or soil inoculation with the vesicular-arbuscular mycorrhizal fungi (Acaulospora,Gigaspora margarita, Glomus fasciculatum). These microorganisms acted synergistically when added simultaneously and the response was significant withAzospirillum brasilense + Gigaspora margarita andAzospirillum brasilense + Glomus fasciculatum combinations over uninoculated control as far as the dry matter content of shoots, root biomass and phosphorus uptake of the millet was concerned.  相似文献   

14.
Large-scale cultivation of pearl millet [Pennisetum glaucum (L.) R. Br. F1 hybrids in India has led to increased incidence of downy-mildew (Sclerospora graminicola). There is concern that the A1 male-sterile cytoplasm used in all the hybrids released so far is responsible for this increase. The influence of A1 malesterile cytoplasm on downy-mildew incidence in pearl millet was studied by comparing the disease reaction of 40 pairs of F1 hybrids, each pair carrying respectively a1 male-sterile and normal B cytoplasm. Mean downy-mildew incidence was similar in the hybrids carrying either A1 male-sterile or B cytoplasm. The general combining ability of lines with and without A1 cytoplasm was found to be similar for downy-mildew incidence. These results indicated that in pearl millet A1 cytoplasm is not associated with increased downymildew incidence. The possible danger of using only one source of cytoplasm has been briefly discussed.  相似文献   

15.
Pearl millet synergids from unpollinated pistils at 1.5–2 and 2.5–3 days postmaturity (dpm) were examined using transmission electron microscopy following antimonate fixation to precipitate loosely-bound calcium (Ca). With increasing age of synergids, the gap above filiform apparatus (FA) and the coalesced vacuoles in midchalazal core extended and merged. The FAs became compressed and precipitates along their common wall were dispersed. The matrix material in numerous small chalazal vacuoles changed from dense to flocculent. Precipitates in vacuoles appeared mainly as clumps without or with a halo in the dense matrix and mostly finely distributed in the flocculent matrix. Eventually, vacuoles became free of both matrix and precipitates. Precipitates bound to nucleus, nucleolus, and micropylar cytoplasm increased initially, but then seemed to decrease, while the nucleus became disorganized and the nucleolus disappeared. Precipitates in the embryo sac wall and nucellar cells also increased initially, but then decreased. At very late stages, egg apparatus and ES lost structural integrity and lacked precipitates. Differences in degeneration and Ca levels of sister synergids were smaller at 1.5–2 dpm than at 2.5–3 dpm. A logical and correlative scheme of degenerative events and Ca distributional changes occurring in pearl millet synergids from maturity to 2.5–3 dpm is presented. The significance of results in pollen tube/sperm cell interactions with synergids and Ca is addressed.On Specific Cooperative Agreement 58-6612-8-002 with the Department of Biochemistry, University of Georgia, Athens, GA 30602, USA  相似文献   

16.
17.
We studied the effect of four weeding regimes (weed free, one manual weeding, one manual weeding+atrazine, and a weedy check) on larval density and leaf defoliation in four pear millet genotypes by the larvae of Oriental armyworm, Mythimna separata. Data were also recorded on the extent of larval parasitism under different weeding regimes, and the parasitoids involved. The leaf damage and larval densities were lower in weed free plots as compared to the weedy plots. This was also reflected in grain yield, as maximum grain yield was recorded in weed-free plots as compared to the weedy plots. Seven parasitoids (Cotesia ruficrus, Metopius rufus, Sturmiopsis inferens, Palexorista solemnis, P. laxa, Carcelia sp., and the entomopathogenic nematode Neoplectana sp. were recorded from M. separata larvae, of which M. rufus, Carceliasp., and Neoplectanasp. were the most abundant. Parasitism by M. rufus was greater in plots with a weed cover and least in weed-free plots, while parasitsm by Carcelia sp. was lower in plots with one hand weeding than in weedy plots. Numerically, parasitism by Neopletana sp. was low in plots treated with atrazine, and maximum in plots weeded manually. Therefore, the minimum level of weeding, which does not affect the crop adversely should be undertaken to promote the biological control of M. separata in pearl millet.  相似文献   

18.
Farmers in Niger generally do not plow their fields and are therefore unable to incorporate phosphate. Experiments were conducted in Niger to assess the effect of soil tillage, P source, and fertilizer placement on yields of pearl millet (Pennisetum glaucum [L.] R. Br.). Treatments included single superphosphate (SSP) or ground Tahoua phosphate rock (PRT) incorporated into the soil during tillage or SSP surface applied after tillage. In plots which were not tilled, P sources (SSP, PRT, and PAPR-partially acidulated rock) were broadcast on the soil surface with no incorporation. In order to improve P efficiency under zero tillage, P was point placed in the soil near the plant with either broadcast or point-placed urea. Treatments in which tillage was used showed a slight though nonsignificant yield increase over untilled plots. The yield increase did not appear to be due to phosphate incorporation but rather to direct tillage effects on early plant growth. In a comparison of SSP with PRT or PAPR broadcast on soils not receiving tillage, PRT performed poorly relative to the other P sources. SSP outyielded PAPR and PRT in 1986, but in subsequent years, no significant difference was found between PAPR and SSP. Point placement of P or N near the plant did not significantly increase yields over broadcast treatments even though the millet was planted with wide 1×1 m spacing.  相似文献   

19.
Effect of soil compaction on root growth and uptake of phosphorus   总被引:9,自引:0,他引:9  
Summary Zea mays L. andLolium rigidum Gaud. were grown for 18 and 33 days respectively in pots containing three layers of soil each weighing 1 kg. The top and bottom layers were 100 mm deep and they had a bulk density of 1200 kg m–3, while the central layer of soil was compacted to one of 12 bulk densities between 1200 and 1750 kg m–3. The soil was labelled with32P and33P so that the contribution of the different layers of soil to the phosphorus content of the plant tops could be determined. Soil water potential was maintained between –20 and –100 kPa.Total dry weight of the plant tops and total root length were slightly affected by compaction of the soil, but root distribution was greatly altered. Compaction decreased root length in the compacted soil but increased root length in the overlying soil. Where bulk density was 1550 kg m–3, root length in the compacted soil was about 0.5 of the maximum. At that density, the penetrometer resistance of the soil was 1.25 and 5.0 MPa and air porosity was 0.05 and 0.14 at water potentials of –20 and –100 kPa respectively, and daytime oxygen concentrations in the soil atmosphere at time of harvest were about 0.1 m3m–3. Roots failed to grow completely through the compacted layer of soil at bulk densities 1550 kg m–3. No differences were detected in the abilities of the two species to penetrate compacted soil.Ryegrass absorbed about twice as much phosphorus from uncompacted soil per unit length of root as did maize. Uptake of phosphorus from each layer of soil was related to the length of root in that layer, but differences in uptake between layers existed. Phosphorus uptake per unit length of root was higher from compacted than from uncompacted soil, particularly in the case of ryegrass at bulk densities of 1300–1500 kg m–3.  相似文献   

20.
J. H. Bouton 《Plant and Soil》1988,110(1):143-144
Pearl millet inbred lines previously selected for differences in acetylene reduction activity (ARA) in seedling agar tubes were found to support low soil ARA. Lines selected for high ARA gave better performance than lines selected for low ARA. None of the high ARA lines was found to approach the ARA of alfalfa with their average rates over 40 fold lower.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号