首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
(1) The degradation of glomerular basement membrane and some of its constituent macromolecules by human kidney lysosomal cysteine proteinases has been investigated. Three cysteine proteinases were extracted from human renal cortex and purified to apparent homogeneity. These proteinases were identified as cathepsins B, H and L principally by their specific activities towards Z-Arg-Arg-NHMec, Leu-NNap and Z-Phe-Arg-NHMec, respectively, and their Mr on SDS-polyacrylamide gel electrophoresis under reducing conditions. (2) Cathepsins B and L, at acid pH, readily hydrolysed azocasein and degraded both soluble and basement membrane type IV and V collagen, laminin and proteoglycans. Their action on the collagens was temperature-dependent, suggesting that they are only active towards denatured collagen. Cathepsin L was more active in degrading basement membrane collagens than was cathepsin B but qualitatively the action of both proteinases were similar, i.e., at below 32 degrees C the release of an Mr 400,000 hydroxyproline product which at 37 degrees C was readily hydrolysed to small peptides. (3) In contrast, cathepsin H had no action on soluble or insoluble collagens or laminin but did, however, hydrolyse the protein core of 35S-labelled glomerular heparan sulphate-rich proteoglycan. (4) Thus renal cysteine proteinases form a family of enzymes which together are capable of degrading the major macromolecules of the glomerular extracellular matrix.  相似文献   

2.
The selective permeability of the glomerular basement membrane to macromolecules is a function of the size and charge of the macromolecule. Evidence suggests that shape may also be a factor. The orientation of macromolecules in solution is dependent on their size, shape, and frictional interactions with moving solvent molecules. The spaces between the glomerular visceral epithelial cells (slit pores) may produce a non-uniform distribution of fluid flow within the basement membrane, and this non-uniformity may increase during disease. This report is of a model that relates the filtration of rigid prolate ellipsoidal (cigar) shaped macromolecules to the size and shape of the filter and to the velocity of solvent flow. The calculations, using published macromolecular and glomerular parameters correspond well to published data. The glomerular visceral epithelial cell, by altering the number, size and distribution of the intercellular spaces, may regulate the passage of ellipsoidal shaped macromolecules, such as albumin and IgG, into and through glomerular structures.  相似文献   

3.
The periodic acid-methenamine silver staining technique, which is frequently used for demonstrating the renal glomerular basement membrane, requires a high degree of skill, and in some cases it may be difficult to obtain a good result. To overcome such difficulty and inconsistency, we have improved the method by performing methenamine silver staining after oxidation with periodic acid and subsequent application of thiosemicarbazide. In this procedure, this semicarbazide enhanced the reaction of methenamine silver with the glomerular basement membrane and the reaction was completed within a shorter time in comparison with the conventional method. This modification also eliminated any nonspecific reaction with the surface of the glass slide and the solution container and yielded excellent and reproducible results irrespective of the fixation method and material employed. It was also found to stain the renal glomerular basement membrane of rabbits, which is demonstrable only with difficulty by the conventional method.  相似文献   

4.
The periodic acid-methenamine silver staining technique, which is frequently used for demonstrating the renal glomerular basement membrane, requires a high degree of skill, and in some cases it may be difficult to obtain a good result. To overcome such difficulty and inconsistency, we have improved the method by performing methenamine silver staining after oxidation with periodic acid and subsequent application of thiosemicarbazide. In this procedure, this semicarbazide enhanced the reaction of methenamine silver with the glomerular basement membrane and the reaction was completed within a shorter time in comparison with the conventional method. This modification also eliminated any nonspecific reaction with the surface of the glass slide and the solution container and yielded excellent and reproducible results irrespective of the fixation method and material employed. It was also. found to stain the renal glomerular basement membrane of rabbits, which is demonstrable only with difficulty by the conventional method.  相似文献   

5.
Summary The question posed in the present study was: are there hydrolytic enzymes, including proteases, present in the extracellular matrix of the glomerular basement membrane? If these enzymes are present they may play a role in the catabolism of the glomerular basement membrane (GBM) and removal of macromolecular debris resulting from ultrafiltration. Enzymes, acid phosphatase - the marker for lysosomal enzymes - β-galactosidase, β-glucuronidase and acid protease (using albumin as substrate) were biochemically assayed in purified basement membrane preparations. It was found that all enzymes were present in significant amounts in the basement membrane. Compared to other enzymes, acid protease activity was present in much higher amounts. The pH optima of these enzymes were variable but all had significant activity at neutral pH. A method was developed to localize the marker enzyme, acid phosphatase, ultrastructurally in the basement membrane in order to substantiate the biochemical findings. Activity was shown by the presence of dense deposits of lead phosphate. Staining for acid phosphatase could also be shown on isolated, purified basement membrane. The demonstration of acid hydrolases in the GBM matrix argues for their role in (i) the extracellular turnover of basement membrane macromolecules, and (ii) clearance of debris of ultrafiltration which tend to clog the membrane pores.  相似文献   

6.
Immunofluorescent microscopy (IF) has become an essential tool in the routine diagnosis of renal pathology. It is thought that glomerular IF patterns represent different forms of immunologically mediated glomerular lesions. However, in order to preserve antigenicity IF is usually done on frozen, unfixed specimen by light microscopy and it is difficult to locate target macromolecules in tissue with precision. In order to establish the precise location of such macromolecules in glomeruli in relation to the ultrastructure, we undertook an immunoelectron microscopic (IEM) study on renal biopsies. Percutaneously biopsied tiny specimen was fixed in glutaraldehyde and processed with protease. Using peroxidase-labeled antisera, a direct IEM was done. With this technique, target macromolecules corresponded well not only to electron-dense deposits but also to IF patterns. In one case of membranous nephropathy, immunoglobulin (Ig) was found to be outside of the glomerular basement membrane (GBM), while IgA was seen to be inside the GBM. For this same case, a similar localization of immunoglobulins was not revealed by IF. In conclusion, IEM is a useful technique that can broaden our knowledge of pathogenic mechanisms in glomerular disease.  相似文献   

7.
The metabolic turnover of rat glomerular proteoglycans in vivo was investigated. Newly synthesized proteoglycans were labeled during a 7-h period after injecting sodium [35S]sulfate intraperitoneally. At the end of the labeling period a chase dose of sodium sulfate was given. Subsequently at defined times (0-163 h) the kidneys were perfused in situ with 0.01% cetylpyridinium chloride in phosphate-buffered saline to maximize the recovery of 35S-proteoglycans. Glomeruli were isolated from the renal cortex and analyzed for 35S-proteoglycans by autoradiographic, biochemical, and immunochemical methods. Grain counting of autoradiographs revealed a complex turnover pattern of 35S-labeled macromolecules, commencing with a rapid phase followed by a slower phase. Biochemical analysis confirmed the biphasic pattern and showed that the total population of [35S]heparan sulfate proteoglycans had a metabolic half-life (t1/2) of 20 and 60 h in the early and late phases, respectively. Heparan sulfate proteoglycans accounted for 80% of total 35S-proteoglycans, the remainder being chondroitin/dermatan sulfate proteoglycans. Whole glomeruli were extracted with 4% 3-[(cholamidopropyl)dimethy-lammonio]-1-propanesulfonate-4 M guanidine hydrochloride, a procedure which solubilized greater than 95% of the 35S-labeled macromolecules. Of these 11-13% was immunoprecipitated by an antiserum against heparan sulfate proteoglycan which, in immunolocalization experiments, showed specificity for staining the basement membrane of rat glomeruli. Autoradiographic analysis showed that 18% of total radioactivity present at the end of the labeling period was associated with the glomerular basement membrane. The glomerular basement membrane [35S]heparan sulfate proteoglycans, identified by immunoprecipitation, have a very rapid turnover with an initial phase, t1/2 = 5 h, and a later phase t1/2 = 20 h.  相似文献   

8.
The patterns of silver affinity and following treatment with guanidine were studied in the basement membrane produced by pareital podocytes induced by corticoids in newborn rabbits. The goal of this study was to analyze the role of the different cell types of the renal corpuscle in the determination of the histochemical characteristics of the glomerular basement membrane (GBM). Jones' method shows that while the GBM exhibited silver affinity only after periodic-acid oxidation, the basement membrane of parietal podocytes exhibits the same histochemical characteristics as the normal parietal basement membrane, appearing deep black both after periodic-acid or permanganate oxidation, and after elastase or lysozyme digestions. Since the treatment with guanidine shows that the basement membrane of the parietal podocytes lacks the endothelial component typical of the GBM, it may be suggested that the special resistance to silver impregnation exhibited by the basement membrane after permanganate oxidation or after different enzymatic digestions is due to its endothelial component.  相似文献   

9.
The glomerular mesangial cell: an expanding role for a specialized pericyte   总被引:32,自引:0,他引:32  
The mesangial cell occupies a central position in the renal glomerulus. It has characteristics of a modified smooth muscle cell, but is also capable of a number of other functions. Among these are generation of prostaglandins (PGs) and mediators of inflammation; production and breakdown of basement membrane and other biomatrix material; synthesis of cytokines; and uptake of macromolecules, including immune complexes. In terms of its smooth muscle activity, the mesangial cell contracts or relaxes in response to a number of vasoactive agents. This ability allows the cells to modify glomerular filtration locally. The cellular mechanism of action of many agents influencing mesangial cells involves activation of phospholipase C for phosphatidylinositol 4,5-bisphosphate. This results in generation of inositol trisphosphate and release of intracellular calcium. Mesangial cell relaxation can be mediated by enhanced cAMP or cGMP generation. Many vasoactive substances also stimulate PG production by mesangial cells. This involves activation of both phospholipase C and A2, the latter being responsible for the release of arachidonic acid. Mesangial cells are also capable of endocytosis of macromolecules, including immune complexes. This is initiated by binding to a specific receptor, resulting in formation of PG, platelet-activating factor, and reactive oxygen species. Mesangial cells can generate interleukin 1 and platelet-derived growth factor and respond to these in an autocrine manner. Thus, the mesangial cell not only can control glomerular filtration, but may also be involved in the response to local injury, including cell proliferation and basement membrane remodeling.  相似文献   

10.
Kidney biopsies from 23 bitches with pyometra and an entire kidney from four pyometra bitches were examined by light microscopy. Kidney tissue was also taken from three bitches at different intervals after ovariohysterectomy for pyometra. All the pyometra bitches had membranous glomerulonephritis or mixed proliferative and membranous glomerulonephritis. Two of the bitches had intraglomerular hyaline nodules resembling those seen in conjunction with diabetes in human beings. The degree of glomerular damage could be correlated with the reduction in glomerular filtration rate determined by function tests. The proximal tubules generally contained numerous hyaline droplets but the degree of this change could not be correlated to the degree of glomerular damage. A yellow pigment, a lipofuscin, was regularly present in the proximal tubules as well as epithelial proliferation and mitoses. Focal atrophy of tubules also occurred, presumably because of obliteration of glomeruli. The cortical interstitium contained collections of mature and immature plasma cells, often surrounding the glomeruli. When the kidneys from three bitches were examined after ovariohysterectomy for pyometra, the glomerular damage in two had regressed to leave only slight thickening of the capillary walls. In the third bitch, examined only 14 days after ovariohysterectomy, healing was partial. Kidney tissue from five bitches was also examined by electron microscopy. The glomerular endothelial cells were swollen and the basement membrane was grealy thickened. With more severe degrees of glomerular damage, an electron-dense material was deposited along the inner surface of the basement membrane and the swollen mesangial cells contained numerous inclusions. There was focal fusion of the foot processes of the glomerular epithelial cells; in one bitch with heavy proteinuria, the fusion was widespread. The proximal tubules contained numerous protein absorption droplets representing resorbed protein. The tubular basement membrane at all levels was thickened. Because of similarities with some other types of renal damage (nephrotoxic nephritis in dogs and acute proliferative glomerulonephritis in human beings), the possibility is broached that the renal lesion in pyometra is the result of an immunobiological process.  相似文献   

11.
Protein A-gold immunocytochemistry was applied in combination with morphometrical approaches to reveal the alpha 1(IV), alpha 2(IV), and alpha 3(IV) chains of type IV collagen as well as entactin on renal basement membranes, particularly on the glomerular one, during maturation. The results have indicated that a heterogeneity between renal basement membranes appears during the maturation process. In the glomerulus at the capillary loop stage, both the epithelial and endothelial cell basement membranes were labeled for the alpha 1(IV) and alpha 2(IV) chains of type IV collagen and entactin. After fusion, both proteins were present on the entire thickness of the typical glomerular basement membrane. At later stages, the labeling for alpha 1(IV) and alpha 2(IV) chains of type IV collagen decreased and drifted towards the endothelial side, whereas the labeling for the alpha 3(IV) chain increased and remained centrally located. Entactin remained on the entire thickness of the basement membrane during maturation and in adult stage. The distribution of endogenous serum albumin in the glomerular wall was studied during maturation, as a reference for the functional properties of the glomerular basement membrane. This distribution, dispersed through the entire thickness of the basement membrane at early stages, shifted towards the endothelial side of the lamina densa with maturation, demonstrating a progressive acquisition of the permselectivity. These results demonstrate that modifications in the content and organization of the different constituents of basement membranes occur with maturation and are required for the establishment of the filtration properties of the glomerular basement membrane.  相似文献   

12.
The renal corpuscle of hibernating and non-hibernating Testudo graeca was studied by means of light and electron microscopy. Renal corpuscles are small and have a glomerular architecture similar to that found in other vertebrates with a limited glomerular filtration rate. In hibernating animals, unlike non-hibernating, some morphological changes took place. The cells of the renal corpuscle were densely packed, podocytes and parietal cells showed a marked cytoplasmic vacuolization, there was a highly developed capillary basement membrane and the endothelial and mesangial cells showed abundant dense granules. These morphological features apparently correspond to a vacuolar degeneration. They may also be the morphological basis of the decrease in the glomerular filtration rate observed during this period.  相似文献   

13.
The glomerular filtration barrier consists of endothelial cells, the glomerular basement membrane, and podocytes. The membrane is a highly crosslinked macromolecular meshwork composed of specific extracellular matrix proteins. The adjacent foot processes of podocytes are bridged along their basolateral surfaces by a slit diaphragm (a porous filter structure of nephrin molecules). Recent discoveries of mutations in the range of genes encoding proteins involved in the structure or function of the glomerular filtration barrier have provided new insights into mechanisms of glomerular diseases. In this review, we summarize recent progress in the elucidation of the genetic basis of some glomerulopathies in humans.  相似文献   

14.
The zebrafish pronephros is a valuable model for studying kidney development and diseases. Ultrastructural studies have revealed that zebrafish and mammals share similarities in nephron structures such as podocytes, slit diaphragms, glomerular basement membrane, and endothelium. However, the basic ultrastructural features of the pronephric glomerulus during glomerulogenesis have not been characterized. To understand these features, it is instructive to consider the developmental process of the pronephros glomerulus. Here, we describe the ultrastructural features of pronephric glomerulus in detail from 24 h hours post‐fertilization (hpf) to 144 hpf, the period during which the pronephric glomerulus develops from initiation to its mature morphology. The pronephric glomerulus underwent progressive morphogenesis from 24 to 72 hpf, and presumptive glomerular cells were observed ventral to the aorta region at 24 hpf. The nascent glomerular basement membrane and initial lumen were formed at 36 hpf. A lumen was clearly visible in the region of the pronephros at 48 hpf. At 60 hpf, the pronephric glomerulus contained more patches of capillaries. After these transformations, the complex capillary vessel networks had formed inside the glomerulus, which was surrounded by podocyte bodies with elaborate foot processes as well as well‐formed glomerular basement membrane by 72 hpf. The number of renal glomerular cells rapidly increased, and the glomerulus presented its delicate structural features by 96 hpf. Morphogenesis was completed at 120 hpf with the final formation of the pronephric glomerulus. J. Morphol. 277:1104–1112, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

15.
Sulfated proteoglycans (fixed anionic sites) on the glomerular basement membrane (GBM) of kidneys from diabetic and nondiabetic patients have been demonstrated by electron microscopy using polycationic dyes (ruthenium red, polyethyleneimine). These substances were used for immersion fixation of renal biopsy specimens. The thickened GBM of diabetics revealed a reduced proteoglycan content within both the narrowed laminae rarae, where normally particles were seen at 60 nm intervals. Proteinuria was observed in all such cases, but no immunopathological alterations of the basement membranes were seen. With both tracer substances anionic sites were also demonstrated in different segments of the thickened lamina densa in diabetics. In polyethyleneimine-treated biopsies some segments of the membrane showed increased anionic moieties at the junction of the basement membrane and the epithelial and endothelial cell membranes. These are probably acid glycoproteins linked to the cell membrane and the synthesis of these basement membrane components may represent a compensatory mechanism seeking to restore normal permeability.  相似文献   

16.
The present microscopic study evaluates the quantitative variations of ferritin particules density within the glomerular ultrastructures after theophyllin perfusion in the Rat. The ferritin particules density increases 3,65 times in the glomerular basement membrane and decreases 3,28 times in the glomerular capillary lumen. So, theophyllin increases considerably the glomerular pathway of the protein macromolecules. This results confirm the increased volumic flow (Jv) and macro-solutes flow (Js') noted with clearance methods and urinary excretion studies.  相似文献   

17.
P Sobhon 《Acta anatomica》1979,105(4):494-504
Embedding kidney in polymerized glutaraldehyde-urea favors the retention of glycoprotein matrix of the cell coat and the basement membrane of the glomeruli. The basement membrane appears as a single layer with uniform amorphous matrix. Thick glycoprotein coat covers the whole surface of prodocytes and their foot processes. In areas other than the slits and the portion of the foot processes which touch on the basement membrane, the coat is a continuous layer with an average thickness of 490 A. In the slits between the foot processes of podocytes there is an actual fusion of glycoprotein coats; the average width of the slit is 415 A. The glycoprotein 'plugs' in the slit may be a significant portion of the glomerular filtration barrier against macromolecules, together with the basement membrane and the slit diaphragms.  相似文献   

18.
Although cholecystokinin is a regulatory peptide with a predominant role in the brain and the gastrointestinal tract, there is an increasing evidence for its role in the kidney. The aim of this study was to reveal morphological changes in the structure of kidney of mice with cholecystokinin overexpression by means of light, transmission and scanning electron microscope, and atomic force microscopy. Using immunohistochemistry the expression of important basement membrane proteins collagen IV, laminin and fibronectin, as well the distribution of cholecystokinin-8 in the renal structures was evaluated. The altered morphology of kidneys of mice with cholecystokinin overexpression was seen by all microscopic techniques used. The renal corpuscles were relatively small with narrow capsular lumen. The basement membranes of renal tubules were thickened and the epithelial cells were damaged, which was more pronounced for distal tubules. Characteristic feature was the increased number of vesicles seen throughout the epithelial cells of proximal and especially in distal tubules reflecting to the enhanced cellular degeneration. The relative expression of laminin but not collagen IV in the glomerular basement membrane was higher than in the tubular basement membranes. The content of fibronectin, in opposite, was higher in tubular membranes. Cholecystokinin-8 was clearly expressed in the glomeruli, in Bowman’s capsule, in proximal and distal tubules, and in collecting ducts. Ultrastructural studies showed irregularly thickened glomerular basement membranes to which elongated cytopodia of differently shaped podocytes were attached. As foot processes were often fused the number of filtration pores was decreased. In conclusion, cholecystokinin plays important role in renal structural formation and in functioning as different aspects of urine production in mice with cholecystokinin overexpression are affected-the uneven glomerular basement membrane thickening, structural changes in podocytes and in filtration slits affect glomerular filtration, while damaged tubular epithelial cells and changed composition of thickened tubular basement membranes affect reabsorption.  相似文献   

19.
The architecture of the basement membranes is essential for proper function. This architecture is based on interactions among its components, which assemble in a complex network. Entactin-1 appears to be the mastermind of this assembling. In entactin-1-null transgenic mice, immunocytochemistry established the absence of entactin-1 in the glomerular basement membrane, and morphological thickening of this membrane was demonstrated. This prompted us to investigate the organization of other components of the glomerular basement membrane in the transgenic animals. The distribution of type IV collagen and laminin remained unchanged, whereas that of anionic charges was significantly altered. We also evaluated the impact of the absence of entactin-1 on cell relays by studying the alpha(3)- and the alpha(v)-integrins along the endothelial and epithelial glomerular cell plasma membranes. Only the density of alpha(v) was found to be increased. Finally, the filtration properties of the glomerular wall were evaluated by revealing endogenous albumin distribution across the basement membrane. This was altered in transgenic animals, suggesting changes in permselectivity properties. Entactin-1 appears to be an essential component in basement membranes because its absence appears to modify the molecular organization leading to alterations in functional properties.  相似文献   

20.
Brush border membrane vesicles (BBMVs) were prepared from the kidneys of rainbow trout exposed acutely (72 h; 13,380 microg Ni L(-1)), chronically (11 months; 289 microg Ni L(-1)), or chronically and acutely, to waterborne nickel (Ni). Uptake of 63Ni into renal BBMVs was temperature-dependent and fitted a two component kinetic model composed of a saturable, Michaelis-Menten component prominent at lower Ni concentrations, and a moderate linear diffusive component apparent at higher Ni concentrations. Chronic Ni exposure reduced the permeability of the BBM to Ni, evidenced by a significantly reduced slope of the linear diffusive component of BBMV uptake. Efflux of Ni from 63Ni-loaded renal BBMVs was not significantly altered by acute Ni challenge. Both Ca2+ and Mg2+ inhibited uptake of Ni into renal BBMVs when present at a molar ratio to Ni of 1000:1. Mg2+-induced inhibition, however, was concentration-dependent and significant in BBMVs prepared from chronically Ni-acclimated fish at far lower molar ratios of 100 and 10 to 1. The data suggest that subtle, long-term modulation of membrane structure and function in the rainbow trout may be a compensatory response to chronic waterborne Ni exposure. Additionally, the data challenge the assumptions of constancy of the physiological parameters underlying physiologically based approaches to modeling metal toxicity. Such approaches are currently employed to derive water quality criteria for some metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号