首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The male obese Wistar Diabetic Fatty (WDF) rat is a genetic model of obesity and non-insulin dependent diabetes (NIDDM). The obese Zucker rat shares the same gene for obesity on a different genetic background but is not diabetic. This study evaluated the degree of insulin resistance in both obese strains by examining the binding and post binding effects of muscle insulin receptors in obese, rats exhibiting hyperinsulinemia and/or hyperglycemia. Insulin receptor binding and affinity and tyrosine kinase activity were measured in skeletal muscle from male WDF fa/fa (obese) and Fa/? (lean) and Zucker fa/fa (obese) and Fa/Fa (homozygous lean) rats. Rats were fed a high sucrose (68% of total Kcal) or Purina stock diet for 14 weeks. At 27 weeks of age, adipose depots were removed for adipose cellularity analysis and the biceps femoris muscle was removed for measurement of insulin binding and insulin-stimulated receptor kinase activity. Plasma glucose (13.9 vs. 8.4 mM) and insulin levels (14,754 vs. 7440 pmoI/L) were significantly higher in WDF obese than in Zucker obese rats. Insulin receptor number and affinity and TK activity were unaffected by diet. Insulin receptor number was significantly reduced in obese WDF rats (2.778 ± 0.617 pmol/mg protein), compared to obese Zucker rats (4.441 ± 0.913 pmol/mg potein). Both obese strains exhibited down regulation of the insulin receptor compared to their lean controls. Maximal tyrosine kinase (TK) activity was significantly reduced in obese WDF rats (505 ± 82 fmol/min/mg protein) compared to obese Zucker rats (1907 ± 610 fmol/min/mg protein). Only obese WDF rats displayed a decrease in TK activity per receptor. These observations establish the obese WDF rat as an excellent model for exploring mechanisms of extreme insulin resistance, particularly post-receptor tyrosine kinase-associated defects, in non-insulin dependent diabetes.  相似文献   

2.
Objective: The metabolism of arachidonic acid (AA) has been shown to be altered in severe insulin resistance that is present in obese (fa/fa) Zucker rats. We examined the effects and mechanism of action of AA on basal and glucose‐stimulated insulin secretion in pancreatic islets isolated from obese (fa/fa) Zucker rats and their homozygous lean (Fa/Fa) littermates. Research Methods and Procedures: Islets were isolated from 10‐ to 12‐week‐old rats and incubated for 45 minutes in glucose concentrations ranging from 3.3 to 16.7 mM with or without inhibitors of the cyclooxygenase or lipoxygenase pathways. Medium insulin concentrations were measured by radioimmunoassay, and islet production of the 12‐lipoxygenase metabolite, 12‐hydroxyeicosatetraenoic acid (12‐HETE), was measured by enzyme immunoassay. Results: In islets from lean animals, AA stimulated insulin secretion at submaximally stimulatory glucose levels (< 11.1 mM) but not at 16.7 mM glucose. In contrast, in islets derived from obese rats, AA potentiated insulin secretion at all glucose concentrations. AA‐induced insulin secretion was augmented in islets from obese compared with lean rats at high concentrations of AA in the presence of 3.3 mM glucose. Furthermore, the inhibitor of 12‐lipoxygenase, esculetin (0.5 μM), inhibited AA‐stimulated insulin secretion in islets from obese but not lean rats. Finally, the islet production of the 12‐HETE was markedly enhanced in islets from obese rats, both in response to 16.7 mM glucose and to AA. Discussion: The insulin secretory response to AA is augmented in islets from obese Zucker rats by a mechanism related to enhanced activity of the 12‐lipoxygenase pathway. Therefore, augmented action of AA may be a mechanism underlying the adaptation of insulin secretion to the increased demand caused by insulin resistance in these animals.  相似文献   

3.
Increased susceptibility to infections in obese patients may be related to decreased availability of arginine and glutamine, which may affect immune cell functions. Our aim was to evaluate the in vitro effects of these amino acids on the function of macrophages from obese insulin-resistant Zucker rats. Macrophages, isolated from male Zucker obese or lean rats by peritoneal lavage, were incubated in Dulbecco's modified Eagle medium (DMEM) without arginine or glutamine. Arginine or glutamine was added to the medium at increasing final concentrations (0, 0.25, 0.5, 1 or 2 mM). After stimulation by lipopolysaccharide (LPS) from E. coli (40 microg/ml), productions of tumour necrosis factor alpha (TNFalpha) and of nitric oxide (NO) were measured after 3 or 48 h incubation, respectively. NO production, lower in macrophages from obese rats, decreased in macrophages from lean rats (0 mM: 2,423 +/- 1,174 vs. 2 mM: 198 +/- 31 microM/mg protein/24 h; P < 0.05), but not in those from obese rats, when glutamine was added. TNFalpha production, lower in macrophages from obese rats, was inversely correlated with glutamine concentration. In the presence of arginine, NO production was constantly higher in macrophages from obese rats. It peaked at 0.5 mM arginine and decreased thereafter in both groups. TNFalpha production in macrophages from lean rats was unaffected by arginine, but decreased in macrophages from obese rats (0 mM: 1920 +/- 450 vs. 2 mM: 810 +/- 90 microM/mg protein/3 h; P < 0.05). These results suggest that abnormalities in cell signalling or in arginine and glutamine metabolism in macrophages of obese rats, resulting in decreased TNFalpha production and increased NO release, may contribute to increased susceptibility to infection in insulin-resistant states.  相似文献   

4.
Lipogenesis from U(14C) lactate was studied in hepatocytes isolated from obese Zucker rats (fa/fa) their lean littermates (Fa/?) and Sprague Dawley rats. The distribution of radioactive carbon between the glycerol and the fatty acid moieties of the acylglycerols were studied. Radioactive lactate was better utilized for glycerol formation than it was for fatty acid formation in the obese rats. However, when oleate was added to the hepatocytic incubation medium, radioactive lactate was preferentially incorporated into the fatty acid moiety of the acylglycerols.  相似文献   

5.
KIBENGE, MOLLY T AND CATHERINE B CHAN. Identification of biochemical defects in pancreatic islets of fa/fa rats: a developmental study. Obes Res. 1995;3:171–178. Adult obese (fa/fa) Zucker rats hypersecrete insulin in response to glucose and other secretagogues. Functional changes in islet ot2-adrenoceptors (8) and glycolytic regulation (9) have been reported. In this study, the development of these biochemical lesions in islets isolated from suckling (3 week old) and weanling (5 week old) lean and fa/fa rats was investigated and compared to results in adult animals. Glucose (15 mM)-induced insulin secretion was inhibited by mannoheptulose (MH) in lean (n=8) but not fa/fa (n=10) adult rats, indicating loss of sensitivity of glucokinase to competitive inhibition. Sensitivity to MH was somewhat reduced in the islets of 3- and 5-week-old fa/fa (n=7 and 12) compared to lean (n=15 and 9) rats, requiring 30–100 fold higher concentrations to achieve significant inhibition. At 3 weeks of age fa/fa rats did not differ from lean controls in either islet insulin content or body weight, but both parameters were increased in fa/fa rats by 5 weeks. The presence of altered α2-adrenoceptor function in fa/fa rats could not be confirmed in this study. Unlike the previous report, prazosin did not antagonize α2-agonist mediated inhibition of insulin secretion. The presence of defective regulation of the glycolytic pathway by mannoheptulose in suckling and weanling rats may contribute to development of hyperinsulinemia in fa/fa rats.  相似文献   

6.
The hormonal control of glycogen synthase and phosphorylase interconversion was investigated in hepatocytes isolated from lean and genetically obese (fa/fa) rats. In cells from obese animals, the inactivation of synthase by 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA), phospholipase C, vasopressin and the alpha 1-adrenergic agonist phenylephrine was markedly impaired, and the property of PMA to counteract phosphorylase activation by phenylephrine was attenuated. The maximal response of phosphorylase activation to phenylephrine and vasopressin was increased in obese-rat hepatocytes, but the sensitivity to these hormones was similar to that in lean-rat hepatocytes. These observations indicate that the defect in protein kinase C that we reported previously in heart of insulin-resistant fa/fa rats [van de Werve, Zaninetti, Lang, Vallotton & Jeanrenaud (1987) Diabetes 36, 310-319] is probably also expressed in liver.  相似文献   

7.
We determined the effect of 48-h elevation of plasma free fatty acids (FFA) on insulin secretion during hyperglycemic clamps in control female Wistar rats (group a) and in the following female rat models of progressive beta-cell dysfunction: lean Zucker diabetic fatty (ZDF) rats, both wild-type (group b) and heterozygous for the fa mutation in the leptin receptor gene (group c); obese (fa/fa) Zucker rats (nonprediabetic; group d); obese prediabetic (fa/fa) ZDF rats (group e); and obese (fa/fa) diabetic ZDF rats (group f). FFA induced insulin resistance in all groups but increased C-peptide levels (index of absolute insulin secretion) only in obese prediabetic ZDF rats. Insulin secretion corrected for insulin sensitivity using a hyperbolic or power relationship (disposition index or compensation index, respectively, both indexes of beta-cell function) was decreased by FFA. The decrease was greater in normoglycemic heterozygous lean ZDF rats than in Wistar controls. In obese "prediabetic" ZDF rats with mild hyperglycemia, the FFA-induced decrease in beta-cell function was no greater than that in obese Zucker rats. However, in overtly diabetic obese ZDF rats, FFA further impaired beta-cell function. In conclusion, 1) the FFA-induced impairment in beta-cell function is accentuated in the presence of a single copy of a mutated leptin receptor gene, independent of hyperglycemia. 2) In prediabetic ZDF rats with mild hyperglycemia, lipotoxicity is not accentuated, as the beta-cell mounts a partial compensatory response for FFA-induced insulin resistance. 3) This compensation is lost in diabetic rats with more marked hyperglycemia and loss of glucose sensing.  相似文献   

8.
The purpose of this study was to investigate the effect of endurance training (10 weeks) on previously reported alterations of lactate exchange in obese Zucker fa/fa rats. We used sarcolemmal vesicles to measure lactate transport capacity in control sedentary rats, Zucker (fa/fa), and endurance trained Zucker (fa/fa) rats. Monocarboxylate transporter (MCT) 1 and 4 content was measured in sarcolemmal vesicles and skeletal muscle. Training increased citrate synthase activity in soleus and in red tibialis anterior, and improved insulin sensitivity measured by intraperitoneal glucose tolerance test. Endurance training increased lactate influx in sarcolemmal vesicles at 1 mM of external lactate concentration and increased MCT1 expression on sarcolemmal vesicles. Furthermore, muscular lactate level was significantly decreased after training in red tibialis anterior and extensor digitorum longus. This study shows that endurance training improves impairment of lactate transport capacity that is found in insulin resistance state like obesity and type 2 diabetes.  相似文献   

9.
When chronically administered, 3-hydroxymethyl N-methyl piperidine (4-chlorophenoxy) acetate, hydrochloride, causes reduced food intake and weight gain in obese (fa/fa) rats. We observe an increase in free fatty acid concentration of obese (fa/fa) rats treated for 12 days.  相似文献   

10.
To clarify the role of acyl-CoA synthetase in development of obesity, the mRNA levels and activities were studied in Zucker fatty rats (fa/fa). In Zucker fatty rats compared with their lean littermates, marked enhancement of ACS were observed in adipose tissues. Obese/lean rats ratio of ACS activity and mRNA in abdominal subcutaneous fat (3.3- and 3.9-fold, respectively) were greater than in mesenteric fat (2.0- and 2.2-fold). The enhancement of ACS activity and mRNA in the liver of fatty rats (1.2- and 1.8-fold) were less than those in the adipose tissues. There were no enhancement of ACS activities and mRNA levels in heart tissue of the obese rats. LPL mRNA levels were also enhanced in adipose tissue of fatty rats and obese/lean ratio of LPL mRNA was also higher in abdominal subcutaneous fat than mesenteric fat (6.2- vs 3.1-fold). The larger obese/lean rats ratio of LPL and ACS parameters in abdominal subcutaneous fat than mesenteric fat may be related to the observation that the increase of subcutaneous fat weight was larger than that of mesenteric fat weight in fatty rats (21.1- vs 4.9-fold). Integrated enhancement of LPL and ACS gene expression in adipose tissue may play an important role in the development of obesity.  相似文献   

11.
Hepatocytes were isolated by EDTA perfusion of livers from lean (Fa/-) and obese (fa/fa) Zucker rats. Triacylglycerol (TG) and sn-glycerol 3-phosphate were increased in fa/fa hepatocytes, but free fatty acids, cholesterol and phospholipid concentrations were similar in both groups. In spite of an identical fatty acid uptake rate, glycerolipid synthesis was higher in obese compared to lean rat hepatocytes, and this difference remained for at least 2-3 days of culture. Triacylglycerol mass secretion was 2-fold higher in obese than in lean rat hepatocytes. This was confirmed by the higher incorporation of labeled glycerol and oleic acid into the medium TG fraction floating at density 1.006 g/ml. Density gradient ultracentrifugation of [14C]oleate-labeled lipoproteins showed that fa/fa hepatocytes secreted more TG-rich lipoproteins, and that 87% of the label was in the VLDL fraction compared with 67% in the medium of Fa/- hepatocytes. Decreased utilisation of leucine for protein synthesis in obese rat compared to lean rat hepatocytes was associated with enhanced leucine oxidation to CO2. [35S]Methionine incorporation showed an identical cell protein synthesis rate. Autoradiography after PAGE separation of secreted apolipoproteins (apoBh, Bl, apoA-VI, apoE, apoA-I, apoC) showed an identical pattern in both cell types.  相似文献   

12.
13.
The obese Zucker (fa/fa) rat is characterized by hyperphagia, hyperinsulinemia, an increase in fat deposition, and a hyperactivity in the hypothalamic-pituitary-adrenal (HPA) axis. The HPA axis in fa/fa rats is hypersensitive to stressful experimental conditions. Food deprivation even leads to a stress reaction in obese fa/fa rats. The present study was conducted to investigate the role of corticosterone in obese rats on the basal, fasting, and postprandial metabolic rate as well as on the central expression of the thyrotropin-releasing hormone (TRH) in these conditions. In addition, the study was aimed at clarifying whether the high levels of corticosterone in obese rats are responsible for the induction of the stress reaction to food deprivation in these animals. The present results demonstrate that whole body fat oxidation and postprandial metabolic responses in obese Zucker rats were improved by adrenalectomy (ADX). At the level of the central nervous system, ADX reversed a decrease in TRH mRNA expression in the paraventricular hypothalamus (PVH) detected in fasting animals. Considering all feeding conditions, the obese rats demonstrated lower TRH mRNA levels compared with lean animals. ADX resulted in an enhanced postprandial activation of the parvocellular PVH. In contrast, the magnocellular part of the PVH was less responsive to refeeding in ADX animals. Finally, ADX failed to prevent the stress response of obese rats to food deprivation. The present results provide evidence that the removal of adrenals resolve some of the metabolic defects encountered in obese Zucker rats. They also demonstrate that not all the abnormalities of the obese Zucker rats are attributable to the hyperactivity of the HPA axis.  相似文献   

14.
We have assessed the presence of VIP/PHI/secretin receptors in heart by: (1) testing the ability of the corresponding peptides to activate adenylate cyclase in cardiac membranes from rat, dog, Cynomolgus monkey and man, and (2) examining the ability of the same peptides to exert inotropic and chronotropic effects on heart preparations from rat and Cynomolgus monkey in vitro. Based on their affinity for natural peptides and synthetic analogs, two types of VIP/PHI/secretin receptors were characterized: the relatively nonspecific "secretin/VIP receptor" of rat heart (that is "secretin-preferring" only in that secretin was more efficient than VIP in stimulating adenylate cyclase), and the "VIP/PHI-preferring" receptor of man, monkey and dog heart. Four physiopathological situations affecting secretin/VIP receptors in rat heart were explored: In male rats from the Okamoto strain and the Lyon strain, two strains presenting spontaneous hypertension, heart membranes exhibited a markedly decreased response of adenylate cyclase to secretin/VIP, with lesser alterations in the responses to isoproterenol and glucagon. This impairment developed in parallel with the occurrence of hypertension and was reproduced in normotensive rats submitted to chronic isoproterenol treatment (but not in Goldblatt hypertensive rats). These findings are consistent with a hyperactivity of norepinephrine pathways in spontaneously hypertensive rats, leading to a reduced number of cardiac post-junctional secretin/VIP receptors bound to adenylate cyclase. Heart membranes from genetically obese (fa/fa) Zucker rats also exhibited severely decreased responses to secretin/VIP with lesser alterations in the responses to glucagon and isoproterenol. These anomalies were specific for the heart, and developed in concomitance with obesity. The first anomaly could not be corrected by severe food restriction. Secretin stimulation of heart adenylate cyclase was also selectively altered in streptozotocin-diabetic rats. Thus, two types of diabetic cardiomyopathy were characterized by a severe local alteration of secretin/VIP receptors coupled to adenylate cyclase. Hypothyroidism, provoked in rat by thyroidectomy or propylthiouracil treatment, again induced a marked decrease in secretin-stimulated cardiac adenylate cyclase activity. In rat papillary muscle electrically stimulated in vitro, secretin exerted a positive inotropic effect. This effect was reduced in obese (fa/fa) Zucker rats. In rat right atrium, secretin also exerted a positive chronotropic effects.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
16.
Previously we reported that suckling lean heterozygous (FA/fa) Zucker rats had a number of adipose tissue measurements intermediate between those of homozygous lean (FA/FA) and obese (fa/fa) rats. However, in young adult male rats maintained on a low-fat diet, these differences were no longer apparent (i.e., values for the two lean genotypes were similar). In the present study we determined whether the heterozygous effect of the "fa" gene was dependent on the consumption of a high-fat diet. Mother rats were fed high-fat diets containing either safflower (SOD) or coconut (COD) oil throughout mating and lactation. Homozygous lean male and female rats were bred, as well as obese male and lean heterozygous female rats. Suckling rats were studied at 17 days of age. Additional male rats were maintained on the same diet as their mothers until 11-12 weeks of age. Obese suckling rats had higher body weights than lean pups. Inguinal fat pad weights and pad-to-body weight ratios followed the pattern of obese greater than lean (FA/fa) pups that were greater than lean (FA/FA) pups. A similar relationship was found for adipose tissue lipogenic enzyme activities. At 11-12 weeks of age, measurements followed the general pattern of obese rats having greater values than lean rats (i.e., FA/fa = FA/FA). SOD-fa/fa rats had higher hepatic lipogenic enzyme activities than COD-fa/fa rats. In addition, SOD rats had higher fat cell numbers than COD rats. These results suggest that specific fatty acids can alter adipocyte proliferation and/or differentiation in vivo. In addition, there appears to be a defect of fatty acid regulation in livers of genetically obese rats. The heterozygous effect of the "fa" gene in suckling Zucker rats was confirmed. However, high-fat feeding did not result in a heterozygous effect in young adult lean male rats. We will next evaluate the role of sex on this effect.  相似文献   

17.
We examined the galanin-like peptide (GALP) gene expression in the arcuate nucleus (ARC) and posterior pituitary (PP) in 6- and 18-week-old male obese fa/fa rats. GALP mRNA in the ARC in fa/fa rats was significantly decreased in 6- and 18-week-old and GALP mRNA in the PP in fa/fa rats was significantly increased in 18-week-old compared to lean Fa/? rats. Insulin treatment in hyperglycemic fa/fa rats partially reversed those changes. These results suggest that the GALP gene expression in fa/fa rats might be regulated in part by leptin-independent mechanisms.  相似文献   

18.
The influence of the hypoglycemic agent glipizide (0-100 microM) on the rate of gluconeogenesis from lactate, as well as on the levels of fructose 2,6-bisphosphate, has been investigated in hepatocytes isolated from genetically obese (fa/fa) Zucker rats and from their corresponding lean (Fa/-) littermates. As compared to lean rat hepatocytes, liver cells isolated from obese animals showed a lower rate of basal gluconeogenesis (0.9 +/- 0.2 vs 5.4 +/- 0.5 micromol of lactate converted to glucose/g cell x 30 min, n=4) and higher levels of fructose 2,6-bisphosphate (11.5 +/- 1.0 vs 5.9 +/- 0.4 nmol/g cell, n=8-9). In lean rat hepatocytes, the presence of glipizide in the incubation medium caused a dose-dependent inhibition of the rate of lactate conversion to glucose (maximal inhibition=46%; EC50 value=26 microM), and simultaneously raised the cellular content of fructose-2,6-bisphosphate (maximal increment=40%; EC50 value=10 microM). In contrast, in hepatocytes isolated from obese rats, the inhibition of gluconeogenesis and the increment in fructose-2,6-bisphosphate levels elicited by glipizide were significantly reduced (maximal effects of 22 and 13%, respectively). Similarly, the activation of glycogen phosphorylase and the increase in hexose 6-phosphate levels in response to glipizide were less marked in obese rat hepatocytes than in liver cells isolated from lean animals. These results demonstrate that the efficacy of sulfonylureas as inhibitors of hepatic gluconeogenesis is reduced in the genetically obese (fa/fa) Zucker rat.  相似文献   

19.
Genetically obese female rats (fa/fa) and their lean littermates (Fa/-) were given oral administration of 3,5,3-triiodothyroacetic acid (TRIAC) (20 micrograms/ 100 g of body weight/ day) during 4 weeks. Metabolism of proteins was evaluated in several organs and in skeletal muscle after intraperitoneal injection of 14C and 3H-leucine 6 days and 16 hrs respectively before the sacrifice of animals. We have determined radioactivity of 14C and 3H and the 3H/14C ratio. No significant differences were found in lean and obese rats except in skeletal muscle. The relative protein turnover in skeletal muscle is significantly higher in the obese rats than in the lean rats. Treatment by TRIAC decreases the body weight gain in obese rats compared with controls but it has no statistically significant effect on the relative protein turnover in either obese or lean rats.  相似文献   

20.
Recent reports have suggested that the obesity and hyperphagia of the genetically obese Zucker rat may be related to defective insulin action or binding in the hypothalamus. We used quantitative autoradiography to determine if insulin binding is altered in specific hypothalamic nuclei associated with food intake. Insulin binding was measured in the arcuate (ARC), dorsomedial (DMN), and ventromedial (VMN) hypothalamic nuclei of 3–4-month-old lean (Fa/Fa) and genetically obese (fa/fa) Zucker rats. A consistently reproducible 15% increase in the total specific binding of 0.1 nM [125I]-insulin was found in the ARC of the obese genotype. A slight increase in insulin binding in the DMN was also found. No difference in specific insulin binding was found between genotypes in the VMN. Nonlinear least squares analysis of competitive binding studies showed that the Kd of the ARC insulin binding site was 33% higher in the lean rats than in the obese rats, indicating an increased affinity for insulin. No difference in site number (Bmax) was found in the ARC, DMN or VMN, and no evidence was found for reduced insulin binding in the hypothalamus of the obese (fa/fa) genotype. The results suggest that hyperphagia and obesity of the obese (fa/fa) Zucker rat genotype may be associated with increased insulin binding in the arcuate nucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号