首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Brain ankyrin was purified from pig brain membranes in milligram quantities by a procedure involving affinity chromatography on erythrocyte spectrinagarose. Brain ankyrin included two polypeptides of Mr = 210,000 and 220,000 that were nearly identical by peptide mapping and were monomers in solution. Brain ankyrin and erythrocyte ankyrin are closely related proteins with the following properties in common: 1) shared antigenic sites, 2) high-affinity binding to the spectrin beta subunit at the midregion of spectrin tetramers, 3) a binding site for the cytoplasmic domain of the erythrocyte anion channel, 4) a binding site for tubulin, 5) a similar domain structure with a protease-resistant domain of Mr = 72,000 that contains the spectrin-binding activity and domains of Mr = 95,000 (brain ankyrin) or 90,000 (erythrocyte ankyrin) that contain binding sites for both tubulin and the anion channel. Brain ankyrin is present at about 100 pmol/mg of membrane protein in demyelinated membranes based on radioimmunoassay with antibody raised against brain ankyrin and affinity purified on brain ankyrin-agarose. Brain spectrin tetramers are present at 30 pmol/mg of membrane protein. Brain ankyrin thus is present in sufficient amounts to attach spectrin to membranes. Brain ankyrin also may attach microtubules to membranes independently of spectrin and has the potential to interconnect microtubules and spectrin-associated actin filaments.  相似文献   

2.
An assay has been developed to measure association of brain ankyrin with protein site(s) in brain membranes that are independent of spectrin and tubulin, behave as integral membrane proteins, and appear to be similar in several respects to the erythrocyte anion channel. Brain membranes were depleted of ankyrin, spectrin, and other peripheral membrane proteins by a brief incubation in 0.1 M sodium hydroxide. Binding of ankyrin to these membranes fulfilled experimentally testable criteria for a specific protein-protein association. Binding was optimal at physiological values for ionic strength and pH, was of high affinity (Kd = 20-60 nM), and the capacity of 25 pmol/mg of brain membrane protein is in the same range as the number of spectrin tetramers (30 pmol/mg). The membrane-binding site(s) for brain ankyrin are likely to be related in some way to the cytoplasmic domain of the erythrocyte anion channel since binding was inhibited by the anion channel domain and by erythrocyte ankyrin. The binding site(s) for brain ankyrin were released from the membrane by limited proteolysis as active water-soluble fragments capable of inhibiting binding of ankyrin to membranes. Ankyrin-binding fragments of Mr = 40,000 and 68,000 were selectively bound to an erythrocyte ankyrin affinity column. The fragment of Mr = 40,000 is close to the size of the cytoplasmic domain of the erythrocyte anion channel. It is likely based on these results that membrane attachment proteins for ankyrin are present in brain and other tissues and that these membrane proteins have domains homologous at least in conformation to the ankyrin-binding site of the erythrocyte anion channel.  相似文献   

3.
Brain spectrin reassociates in in vitro binding assays with protein(s) in highly extracted brain membranes quantitatively depleted of ankyrin and spectrin. These newly described membrane sites for spectrin are biologically significant and involve a protein since (a) binding occurs optimally at physiological pH (6.7-6.9) and salt concentrations (50 mM), (b) binding is abolished by digestion of membranes with alpha-chymotrypsin, (c) Scatchard analysis is consistent with a binding capacity of at least 50 pmol/mg total membrane protein, and highest affinity of 3 nM. The major ankyrin-independent binding activity of brain spectrin is localized to the beta subunit of spectrin. Brain membranes also contain high affinity binding sites for erythrocyte spectrin, but a 3-4 fold lower capacity than for brain spectrin. Some spectrin-binding sites associate preferentially with brain spectrin, some with erythrocyte spectrin, and some associate with both types of spectrin. Erythrocyte spectrin contains distinct binding domains for ankyrin and brain membrane protein sites, since the Mr = 72,000 spectrin-binding fragment of ankyrin does not compete for binding of spectrin to brain membranes. Spectrin binds to a small number of ankyrin-independent sites in erythrocyte membranes present in about 10,000-15,000 copies/cell or 10% of the number of sites for ankyrin. Brain spectrin binds to these sites better than erythrocyte spectrin suggesting that erythrocytes have residual binding sites for nonerythroid spectrin. Ankyrin-independent-binding proteins that selectively bind to certain isoforms of spectrin provide a potentially important flexibility in cellular localization and time of synthesis of proteins involved in spectrin-membrane interactions. This flexibility has implications for assembly of the membrane skeleton and targeting of spectrin isoforms to specialized regions of cells.  相似文献   

4.
Brain membranes contain an actin-binding protein closely related in structure and function to erythrocyte spectrin. The proteins that attach brain spectrin to membranes are not established, but, by analogy with the erythrocyte membrane, may include ankyrin and protein 4.1. In support of this idea, proteins closely related to ankyrin and 4.1 have been purified from brain and have been demonstrated to associate with brain spectrin. Brain ankyrin binds with high affinity to the spectrin beta subunit at the midregion of spectrin tetramers. Brain ankyrin also has binding sites for the cytoplasmic domain of the erythrocyte anion channel (band 3), as well as for tubulin. Ankyrins from brain and erythrocytes have a similar domain structure with protease-resistant domains of Mr = 72,000 that contain spectrin-binding activity, and domains of Mr = 95,000 (brain ankyrin) or 90,000 (erythrocyte ankyrin) that contain binding sites for both tubulin and the anion channel. Brain ankyrin is present at about 100 pmol/mg membrane protein, or about twice the number of copies of spectrum beta chains. Brain ankyrin thus is present in sufficient amounts to attach spectrin to membranes, and it has the potential to attach microtubules to membranes as well as to interconnect microtubules with spectrin-associated actin filaments. Another spectrin-binding protein has been purified from brain membranes, and this protein cross-reacts with erythrocyte 4.1. Brain 4.1 is identical to the membrane protein synapsin, which is one of the brain's major substrates for cAMP-dependent and Ca/calmodulin-dependent protein kinases with equivalent physical properties, immunological cross-reaction, and peptide maps. Synapsin (4.1) is present at about 60 pmol/mg membrane protein, and thus is a logical candidate to regulate certain protein linkages involving spectrin.  相似文献   

5.
Brain spectrin, through its beta subunit, binds with high affinity to protein-binding sites on brain membranes quantitatively depleted of ankyrin (Steiner, J., and Bennett, V. (1988) J. Biol. Chem. 263, 14417-14425). In this study, calmodulin is demonstrated to inhibit binding of brain spectrin to synaptosomal membranes. Submicromolar concentrations of calcium are required for inhibition of binding, with half-maximal effects at pCa = 6.5. Calmodulin competitively inhibits binding of spectrin to protein(s) in stripped synaptosomal membranes, with Ki = 1.3 microM in the presence of 10 microM calcium. A reversible receptor-mediated process, and not proteolysis, is responsible for inhibition since the effect of calcium/calmodulin is reversed by the calmodulin antagonist trifluoperazine and by chelation of calcium with sodium [ethylenebis(oxyethylenenitrilo)]tetraacetic acid. The target of calmodulin is most likely the spectrin attachment protein(s) rather than spectrin itself since: (a) membrane binding of the brain spectrin beta subunit, which does not associate with calmodulin, is inhibited by calcium/calmodulin, and (b) red cell spectrin which binds calmodulin very weakly, is inhibited from interacting with membrane receptors in the presence of calcium/calmodulin. Ca2+/calmodulin inhibited association of erythrocyte spectrin with synaptosomal membranes but had no effect on binding of erythrocyte or brain spectrin to ankyrin in erythrocyte membranes. These experiments demonstrate the potential for differential regulation of spectrin-membrane protein interactions, with the consequence that Ca2+/calmodulin can dissociate direct spectrin-membrane interactions locally or regionally without disassembly of the areas of the membrane skeleton stabilized by linkage of spectrin to ankyrin. A membrane protein of Mr = 88,000 has been identified that is dissociated from spectrin affinity columns by calcium/calmodulin and is a candidate for the calmodulin-sensitive spectrin-binding site in brain.  相似文献   

6.
Erythrocyte adducin is a membrane skeletal protein that binds to calmodulin, is a major substrate for protein kinase C, and associates preferentially with spectrin-actin complexes. Erythrocyte adducin also promotes association of spectrin with actin, and this activity is inhibited by calmodulin. This study describes the isolation and characterization of a brain peripheral membrane protein closely related to erythrocyte adducin. Brain and erythrocyte adducin have at least 50% antigenic sites in common, each contains a protease-resistant core of Mr = 48,000-48,500, and both proteins are comprised of two partially homologous polypeptides of Mr = 103,000 and 97,000 (erythrocytes) and Mr = 104,000 and 107,000-110,000 (brain). Brain and erythrocyte adducin associate preferentially with spectrin-actin complexes as compared to spectrin or actin alone, and both proteins also promote binding of spectrin to actin. Brain adducin binds calmodulin in a calcium-dependent manner, although the Kd of 1.3 microM is weaker by 5-6-fold than the Kd of erythrocyte adducin for calmodulin. Brain adducin is a substrate for protein kinase C in vitro and can accept up to 2 mol of phosphate/mol of protein. Adducin provides a potential mechanism in cells for mediating site-directed assembly of additional spectrin molecules and possibly other proteins at the spectrin-actin junction. Brain tissue contains 12 pmol of adducin/mg of membrane protein, which is the most of any tissue examined other than erythrocytes, which have 50 pmol/mg. The presence of high amounts of adducin in brain suggests some role for this protein in specialized activities of nerve cells.  相似文献   

7.
A calmodulin and alpha-subunit binding domain in human erythrocyte spectrin   总被引:3,自引:0,他引:3  
Human erythrocyte spectrin binds calmodulin weakly under native conditions. This binding is enhanced in the presence of urea. The site responsible for this enhanced binding in urea has now been shown to reside in a specific region of the spectrin beta-subunit. Cleavage of spectrin with trypsin, cyanogen bromide or 2-nitro-5-thiocyanobenzoic acid generates fragments of the molecule which retain the ability to bind calmodulin under denaturing conditions. The origin of these fragments, identified by two-dimensional peptide mapping, is the terminal region of the spectrin beta-IV domain. The smallest peptide active in calmodulin binding is a 10 000 Mr fragment generated by cyanogen bromide cleavage. Only the intact 74 000 Mr fragment generated by trypsin (the complete beta-IV domain) retains the capacity to reassociate with the isolated alpha-subunit of spectrin. The position of a putative calmodulin binding site near a site for subunit-subunit association and protein 4.1 and actin binding suggests a possible role in vivo for calmodulin regulation of the spectrin-actin membrane skeleton or for regulation of subunit-subunit associations. This beta-subunit binding site in erythrocyte spectrin is found in a region near the NH2-terminus at a position analogous to the alpha-subunit calmodulin binding site previously identified in a non-erythroid spectrin by ultrastructural studies.  相似文献   

8.
Spectrin, the major cytoskeletal protein in erythrocytes, is localized on the inner membrane surface in association with membrane-spanning glycoproteins and with intramembrane particles. The presence of a specific, high-affinity protein binding site for spectrin on the cytoplasmic surface of the membrane has been established by measurement of reassociation of spectrin with spectrin-depleted inside-out vesicles. A 72,000 Mr proteolytic fragment of this attachment protein has been purified, which bound to spectrin in solution and competed for reassociation of spectrin with vesicles. A 215,000 Mr polypeptide has been identified as the precursor of the spectrin-binding fragment. The membrane attachment protein for spectrin was named ankyrin, and has been purified and characterized. Ankyrin has been demonstrated to be tightly associated in detergent extracts of vesicles with band 3, a major membrane-spanning polypeptide, and to bind directly to a proteolytic fragment derived from the cytoplasmic domain of band 3. Ankyrin is thus an example of a protein that directly links a cytoplasmic structural protein to an integral membrane protein. The organization of the erythrocyte membrane has implications for more complex cell types since immunoreactive forms of ankyrin distinct from myosin or filamin have been detected by radioimmunoassay in a variety of cells and tissues. Indirect immunofluorescent staining of cultured cells reveals immunoreactive forms of ankyrin in a cytoplasmic meshwork and in a punctate distribution over nuclei. The staining changes dramatically during mitosis, with concentration of stain at the spindle poles in metaphase and intense staining of the cleavage furrow during cytokinesis.  相似文献   

9.
Kidney Na+,K(+)-ATPase has been recently shown to bind erythroid ankyrin and to colocalize with ankyrin at the basolateral cell surface of kidney epithelial cells. These observations suggest that Na+,K(+)-ATPase is linked via ankyrin to the spectrin/actin-based membrane cytoskeleton. In the present study we show that Na+,K(+)-ATPase and analogs of spectrin, ankyrin and actin copurify from detergent extracts of pig kidney and parotid gland membranes. Actin, spectrin and ankyrin were extracted from purified Na+,K(+)-ATPase microsomes at virtually identical conditions as their counterparts from the erythrocyte membrane, i.e., 1 mM EDTA (spectrin, actin) and 1 M KCl (ankyrin). Visualization of the stripped proteins by rotary shadowing revealed numerous elongated spectrin-like dimers (100 nm) and tetramers (215 nm), a fraction of which (17%) was associated with globular (10 nm) ankyrin-like particles. Like erythrocyte ankyrin, kidney ankyrin was cleaved into a soluble 72 kDa fragment and a membrane-bound 90 kDa fragment. Consistent with our previous immunocytochemical findings on the pig kidney, Na+,K(+)-ATPase and ankyrin were found to be colocalized at the basolateral plasma membrane of striated ducts and acini of the pig parotid gland. The present findings confirm and extend the recently proposed concept that in polarized epithelial cells Na+,K(+)-ATPase may serve as major attachment site for the spectrin-based membrane cytoskeleton to the basolateral cell domain. Connections of integral membrane proteins to the cytoskeleton may help to place these proteins at specialized domains of the cell surface and to prevent them from endocytosis.  相似文献   

10.
Red blood cell spectrin and its nonerythroid analogues are linked to integral proteins of the membrane by several skeletal protein receptors, such as ankyrin and protein 4.1 together with p55. However, there are also many reasons for believing that they are insufficient to engender all the properties that characterise the native membrane. Therefore, we are concerned with the mechanism by which brain spectrin interacts with phospholipids of the membrane bilayer. Brain and erythrocyte spectrin were shown previously to bind phospholipid vesicles as well as monolayers prepared from aminophospholipids: phosphatidylethanolamine and phosphatidylserine and their mixtures with phosphatidylcholine (PC).In the present study, it is shown that brain spectrin binds to monolayers prepared from anionic phospholipids, such as phosphatidylinositol (PI), phosphatidic acid (PA), phosphatidyl glycerol, diphosphatidylglycerol, and their mixtures with PC. Brain spectrin injected into the subphase to reach nanomolar concentration induced a substantial increase in the surface pressure of monolayers prepared from the phospholipids and their mixtures mentioned above, possibly by penetrating them. This effect is stronger in the case of monolayers prepared from anionic phospholipids alone and weaker when monolayers were prepared from mixtures with PC. The weakest effect was observed in the case of phosphatidylinositol-4,5-bisphosphate monolayers. An interaction of brain spectrin with monolayers prepared from anionic phospholipids (PI/PC 7:3 and PA/PC 7:3) was inhibited (PI/PC much stronger than PA/PC) by purified erythrocyte ankyrin, which indicates that the binding site for those lipids is located in the β-subunit, possibly in, or in close proximity of, the ankyrin-binding site.In contrast, erythrocyte spectrin injected into the subphase induced a change in the surface pressure of monolayers prepared from anionic phospholipids, which was equal or smaller than the value of surface pressure change induced by protein without a monolayer. This effect was different from what had been observed previously for monolayers prepared from aminophospholipids and their mixtures with PC, and from the data for nonerythroid spectrin presented here.  相似文献   

11.
We studied the binding of actin to the erythrocyte membrane by a novel application of falling ball viscometry. Our approach is based on the notion that if membranes have multiple binding sites for F-actin they will be able to cross-link and increase the viscosity of actin. Spectrin- and actin-depleted inside-out vesicles reconstituted with purified spectrin dimer or tetramer induce large increases in the viscosity of actin. Comparable concentrations of spectrin alone, inside-out vesicles alone, inside-out vesicles plus heat-denatured spectrin dimmer or tetramer induce large increases in the viscosity of actin. Comparable concentrations of spectrin alone, inside-out vesicles alone, inside-out plus heat denatured spectrin, ghosts, or ghosts plus spectrin have no effect on the viscosity of actin. Centrifugation experiments show that the amount of actin bound to the inside-out vesicles is enhanced in the presence of spectrin. The interactions detected by low-shear viscometry reflect actin interaction with membrane- bound spectrin because (a) prior removal of band 4.1 and ankyrin (band 2.1, the high- affinity membrane attachment site for spectrin) reduces both spectrin binding to the inside-out vesicles and their capacity to stimulate increase in viscosity of actin in the presence of spectrin + actin are inhibited by the addition of the water-soluble 72,000- dalton fragment of ankyrin, which is known to inhibit spectrin reassociation to the membrane. The increases in viscosity of actin induced by inside-out vesicles reconstituted with purified spectrin dimer or tetramer are not observed when samples are incubated at 0 degrees C. This temperature dependence may be related to the temperature-dependent associations we observe in solution studies with purified proteins: addition of ankyrin inhibits actin cross-linking by spectrin tetramer plus band 4.1 at 0 degrees C, and enhances it at 32 degrees C. We conclude (a) that falling ball viscometry can be used to assay actin binding to membranes and (b) that spectrin is involved in attaching actin filaments or oligomers to the cytoplasmic surface of the erythrocyte membrane.  相似文献   

12.
Red blood cell spectrin and its nonerythroid analogues are linked to integral proteins of the membrane by several skeletal protein receptors, such as ankyrin and protein 4.1 together with p55. However, there are also many reasons for believing that they are insufficient to engender all the properties that characterise the native membrane. Therefore, we are concerned with the mechanism by which brain spectrin interacts with phospholipids of the membrane bilayer. Brain and erythrocyte spectrin were shown previously to bind phospholipid vesicles as well as monolayers prepared from aminophospholipids: phosphatidylethanolamine and phosphatidylserine and their mixtures with phosphatidylcholine (PC).In the present study, it is shown that brain spectrin binds to monolayers prepared from anionic phospholipids, such as phosphatidylinositol (PI), phosphatidic acid (PA), phosphatidyl glycerol, diphosphatidylglycerol, and their mixtures with PC. Brain spectrin injected into the subphase to reach nanomolar concentration induced a substantial increase in the surface pressure of monolayers prepared from the phospholipids and their mixtures mentioned above, possibly by penetrating them. This effect is stronger in the case of monolayers prepared from anionic phospholipids alone and weaker when monolayers were prepared from mixtures with PC. The weakest effect was observed in the case of phosphatidylinositol-4,5-bisphosphate monolayers. An interaction of brain spectrin with monolayers prepared from anionic phospholipids (PI/PC 7:3 and PA/PC 7:3) was inhibited (PI/PC much stronger than PA/PC) by purified erythrocyte ankyrin, which indicates that the binding site for those lipids is located in the beta-subunit, possibly in, or in close proximity of, the ankyrin-binding site.In contrast, erythrocyte spectrin injected into the subphase induced a change in the surface pressure of monolayers prepared from anionic phospholipids, which was equal or smaller than the value of surface pressure change induced by protein without a monolayer. This effect was different from what had been observed previously for monolayers prepared from aminophospholipids and their mixtures with PC, and from the data for nonerythroid spectrin presented here.  相似文献   

13.
Interactions between spectrin and the inner surface of the human erythrocyte membrane have been implicated in the control of lateral mobility of the integral membrane proteins. We report here that incubation of “leaky” erythrocytes with a water-soluble proteolytic fragment containing the membrane attachment site for spectrin achieves a selective and controlled dissociation of spectrin from the membrane, and increases the rate of lateral mobility of fluorescein isothiocyanate-labeled integral membrane proteins (> 70% of label in band 3 and PAS-1). Mobility of membrane proteins is measured as an increase in the percentage of uniformly fluorescent cells with time after fusion of fluorescent with nonfluorescent erythrocytes by Sendai virus. The cells are permeable to macromolecules since virus-fused erythrocytes lose most of their hemoglobin. The membrane attachment site for spectrin has been solubilized by limited proteolysis of inside-out erythrocyte vesicles and has been purified (V). Bennett, J Biol Chem 253:2292 (1978). This 72,000-dalton fragment binds to spectrin in solution, competitively inhibits association of 32P-spectrin with inside-out vesicles with a Ki of 10?7M, and causes rapid dissociation of 32P-spectrin from vesicles. Both acid-treated 72,000-dalton fragment and the 45,000 dalton-cytoplasmic portion of band 3, which also was isolated from the proteolytic digest, have no effect on spectrin binding, release, or membrane protein mobility. The enhancement of membrane protein lateral mobility by the same polypeptide that inhibits binding of spectrin to inverted vesicles and displaces spectrin from these vesicles provides direct evidence that the interaction of spectrin with protein components in the membrane restricts the lateral mobility of integral membrane proteins in the erythrocyte.  相似文献   

14.
The microtubule-associated proteins MAPs 1 and 2 from pig brain have been found to react with antibodies directed against human ankyrin and spectrin, respectively (Bennett and Davis, 1981; Davis and Bennett, 1982). In a complementary approach we have prepared antibodies against MAP1 alpha. MAP1 gamma and MAP2 purified from pig brain and tested their reactivity with human erythrocyte membrane proteins. Anti-MAP1 alpha was shown to react with alpha and beta-spectrin and with protein 4.1; anti-MAP1 gamma reacted with alpha-spectrin and ankyrin and with a 60 K peptide which copurified with human spectrin. Finally anti-MAP2 was specific for beta-spectrin and protein 4.2. The biological function of protein 4.2 is still unknown but details on the interactions between ankyrin, spectrin and protein 4.1 and their role in mediating the linkage of oligomeric actin on the erythrocyte membrane are well documented. The present results, which demonstrate extended immunological analogies between pig brain high molecular weight MAPs and human erythrocyte membrane proteins, may reflect the presence, in the two families of proteins, of similar functionally important epitopes.  相似文献   

15.
Human erythrocyte ankyrin was cleaved by restricted proteolysis at 0 degrees C into two distinct chemical domains. The site on ankyrin that binds spectrin was found to be within a 55,000-dalton domain by spectrin affinity chromatography and co-sedimentation with spectrin in a sucrose gradient. A 32,000-dalton fragment of this domain was prepared (tryptic digest, 0 degrees C, 24 h), separated by gel filtration, and shown to inhibit spectrin binding to the membrane. By comparison with previous two-dimensional peptide maps, the spectrin-binding site was located within this 32,000-dalton fragment near the end of the molecule. The band 3-binding site was identified within an 82,000-dalton domain by binding to a band 3 affinity column. Gel electrophoresis in the absence of detergents confirmed these results and demonstrated that a peptide from the cytoplasmic portion of band 3 retained the capacity to bind the 82,000-dalton domain. The binding properties of the structural domains of ankyrin were correlated with a determination of the affinity constant of the intact molecule. Ankyrin bound with a high affinity to the cytoplasmic portion of band 3 (KD = 8 X 10(-8) M) and to spectrin tetramer (KD = 1 X 10(-7) M) but less so to spectrin dimer (KD = 1 X 10(-6) M). These findings are summarized in a preliminary structural and functional model of ankyrin's role in linking spectrin to the membrane.  相似文献   

16.
Erythrocyte ankyrin is a member of a family of proteins that mediate the linkage between membrane proteins and the underlying spectrin-actin-based cytoskeleton. Ankyrin has been shown to interact with a variety of integral membrane proteins such as the anion exchanger, the Na+K(+)-ATPase, and the voltage-dependent sodium channel (NaCh) in brain. To understand how ankyrin interacts with these proteins and maintains its specificity and high affinity for the voltage-dependent NaCh, we have mapped the binding site on ankyrin for the NaCh by examining the binding of purified ankyrin subfragments, prepared by proteolytic cleavage, to the purified rat brain NaCh incorporated into liposomes. 125I-Labeled ankyrin and the radiolabeled 89- and 43-kDa fragments of ankyrin bind to the NaCh with high affinities and with Kd values of 34, 22, and 63 nM, respectively, and have stoichiometries of approximately 1 mol/mol NaCh. The 72-kDa spectrin binding domain is inactive and does not bind to the NaCh. Dissection of ankyrin reveals that the 43-kDa domain retains all the binding properties of native ankyrin to the NaCh. Analysis of the primary structure reveals that the NaCh binding site is confined to a domain of ankyrin consisting entirely of the 11 terminal 33-amino acid repeats and is distinct from the ankyrin domains that interact with spectrin and the Na+K(+)-ATPase.  相似文献   

17.
Ankyrin mediates the attachment of spectrin to transmembrane integral proteins in both erythroid and nonerythroid cells by binding to the beta-subunit of spectrin. Previous studies using enzymatic digestion, 2-nitro-5-thiocyanobenzoic acid cleavage, and rotary shadowing techniques have placed the spectrin-ankyrin binding site in the COOH-terminal third of beta-spectrin, but the precise site is not known. We have used a glutathione S-transferase prokaryotic expression system to prepare recombinant erythroid and nonerythroid beta-spectrin from cDNA encoding approximately the carboxy-terminal half of these proteins. Recombinant spectrin competed on an equimolar basis with 125I-labeled native spectrin for binding to erythrocyte membrane vesicles (IOVs), and also bound ankyrin in vitro as measured by sedimentation velocity experiments. Although full length beta-spectrin could inhibit all spectrin binding to IOVs, recombinant beta-spectrin encompassing the complete ankyrin binding domain but lacking the amino-terminal half of the molecule failed to inhibit about 25% of the binding capacity of the IOVs, suggesting that the ankyrin-independent spectrin membrane binding site must lie in the amino-terminal half of beta-spectrin. A nested set of shortened recombinants was generated by nuclease digestion of beta-spectrin cDNAs from ankyrin binding constructs. These defined the ankyrin binding domain as encompassing the 15th repeat unit in both erythroid and nonerythroid beta-spectrin, amino acid residues 1,768-1,898 in erythroid beta-spectrin. The ankyrin binding repeat unit is atypical in that it lacks the conserved tryptophan at position 45 (1,811) within the repeat and contains a nonhomologous 43 residue segment in the terminal third of the repeat. It also appears that the first 30 residues of this repeat, which are highly conserved between the erythroid and nonerythroid beta-spectrins, are critical for ankyrin binding activity. We hypothesize that ankyrin binds directly to the nonhomologous segment in the 15th repeat unit of both erythroid and nonerythroid beta-spectrin, but that this sequence must be presented in the context of a properly folded spectrin "repeat unit" structure. Future studies will identify which residues within the repeat unit are essential for activity, and which residues determine the specificity of various spectrins for different forms of ankyrin.  相似文献   

18.
This report describes Ca2+-dependent binding of 125I-labeled calmodulin (125I-CaM) to erythrocyte membranes and identification of two new CaM-binding proteins. Erythrocyte CaM labeled with 125I-Bolton Hunter reagent fully activated erythrocyte (Ca2+ + Mg2+)-ATPase. 125I-CaM bound to CaM depleted membranes in a Ca2+-dependent manner with a Ka of 6 x 10(-8) M Ca2+ and maximum binding at 4 x 10(-7) M Ca2+. Only the cytoplasmic surface of the membrane bound 125I-CaM. Binding was inhibited by unlabeled CaM and by trifluoperazine. Reduction of the free Ca2+ concentration or addition of trifluoperazine caused a slow reversal of binding. Nanomolar 125I-CaM required several hours to reach binding equilibrium, but the rate was much faster at higher concentrations. Scatchard plots of binding were curvilinear, and a class of high affinity sites was identified with a KD of 0.5 nM and estimated capacity of 400 sites per cell equivalent for inside-out vesicles (IOVs). The high affinity sites of IOVs most likely correspond to Ca2+ transporter since: (a) Ka of activation of (Ca2+ + Mg2+)-ATPase and KD for binding were nearly identical, and (b) partial digestion of IOVs with alpha-chymotrypsin produced activation of the (Ca2+ + Mg2+)-ATPase with loss of the high affinity sites. 125I-CaM bound in solution to a class of binding proteins (KD approximately 55 nM, 7.3 pmol per mg of ghost protein) which were extracted from ghosts by low ionic strength incubation. Soluble binding proteins were covalently cross-linked to 125I-CaM with Lomant's reagent, and 2 bands of 8,000 and 40,000 Mr (Mr of CaM subtracted) and spectrin dimer were observed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis autoradiography. The 8,000 and 40,000 Mr proteins represent a previously unrecognized class of CaM-binding sites which may mediate unexplained Ca2+-induced effects in the erythrocyte.  相似文献   

19.
Human erythrocyte clathrin and clathrin-uncoating protein   总被引:2,自引:0,他引:2  
Clathrin, a Mr = 72,000 clathrin-associated protein, and myosin were purified in milligram quantities from the same erythrocyte hemolysate fraction. Erythrocyte clathrin closely resembled brain clathrin in several respects: (a) both are triskelions as visualized by electron microscopy with arms 40 nm in length with globular ends and a flexible hinge region in the middle of each arm, and these triskelions assemble into polyhedral "cages" at appropriate pH and ionic strength; (b) both molecules contain heavy chains of Mr = 170,000 that are indistinguishable by two-dimensional maps of 125I-labeled peptides; and (c) both molecules contain light chains of Mr approximately 40,000 in a 1:1 molar ratio with the heavy chain. Erythrocyte clathrin is not identical to brain clathrin since antibody raised against the erythrocyte protein reacts better with erythrocyte clathrin than with brain clathrin and since brain clathrin contains two light chains resolved on sodium dodecyl sulfate gels while the light chain of erythrocyte clathrin migrates as a single band. The erythrocyte Mr = 72,000 clathrin-associated protein is closely related to a protein in brain that mediates ATP-dependent disassembly of clathrin from coated vesicles and binds tightly to clathrin triskelions (Schlossman, D. M., Schmid, S. L., Braell, W. A., and Rothman, J. E. (1984) J. Cell Biol. 99, 723-733). The erythrocyte and brain proteins have identical Mr on sodium dodecyl sulfate gels and identical maps of 125I-labeled peptides, share antigenic sites, and bind tightly to ATP immobilized on agarose. Clathrin and the uncoating protein are not restricted to reticulocytes since equivalent amounts of these proteins are present in whole erythrocyte populations and reticulocyte-depleted erythrocytes. Clathrin is present at 6,000 triskelions/cells, while the uncoating protein is in substantial excess at 250,000 copies/cell.  相似文献   

20.
This report demonstrates that the high affinity binding of ankyrin to two well characterized ankyrin-binding proteins, the erythrocyte anion exchanger and kidney Na+K(+)-ATPase, requires interaction of these proteins with unique sites on the ankyrin molecule. Binding of 125I-labeled erythrocyte ankyrin and ankyrin proteolytic domains was measured to the anion exchanger and Na+K(+)-ATPase incorporated into phosphatidylcholine liposomes. 125I-Labeled ankyrin associated with both anion exchanger and Na+K(+)-ATPase liposomes with a high affinity (KD ranging from 10 to 25 nM), and a capacity approaching 1 mol of ankyrin/2 mol of ATPase and 1 mol of ankyrin/8 mol of anion exchanger. The 43 kDa cytoplasmic domain of the erythrocyte anion exchanger inhibited binding of ankyrin to both the anion exchanger and Na+K(+)-ATPase liposomes with a 50% reduction at approximately 90 nM for both proteins. Further binding experiments using proteolytic domains derived from ankyrin demonstrated the following differences between the anion exchanger and Na+K(+)-ATPase in interactions with ankyrin: 1) 125I-Labeled Na+K(+)-ATPase associated with both the 89-kDa domain as well as the spectrin binding domain of ankyrin, while the anion exchanger only associated with the 89-kDa domain. 2) The 125I-labeled 89-kDa domain of ankyrin associated with Na+K(+)-ATPase liposomes with at least a 20-fold lower affinity compared with intact ankyrin while this domain associated with the anion exchanger with a 2-3-fold increase in affinity compared with intact ankyrin. 3) The 125I-labeled spectrin-binding domain of ankyrin associated with the Na+K(+)-ATPase liposomes to at least an 8-fold greater extent than to anion exchanger liposomes. The data are consistent with an independent acquisition of high affinity ankyrin binding activity for the anion exchanger and Na+K(+)-ATPase proteins through a convergent evolutionary process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号