首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mouse islets were used to define the glucose-dependence and extracellular Ca2+ requirement of muscarinic stimulation of pancreatic beta-cells. In the presence of a stimulatory concentration of glucose (10 mM) and of Ca2+, acetylcholine (0.1-100 microM) accelerated 3H efflux from islets preloaded with myo-[3H]inositol. It also stimulated 45Ca2+ influx and efflux, 86Rb+ efflux and insulin release. In the absence of Ca2+, only 10-100 microM-acetylcholine mobilized enough intracellular Ca2+ to trigger an early but brief peak of insulin release. At a non-stimulatory concentration of glucose (3 mM), 1 microM- and 100 microM-acetylcholine increased 45Ca2+ and 86Rb+ efflux in the presence and absence of extracellular Ca2+. However, only 100 microM-acetylcholine marginally increased 45Ca2+ influx and caused a small, delayed, stimulation of insulin release, which was abolished by omission of Ca2+. At a maximally effective concentration of glucose (30 mM), 1 microM- and 100 microM-acetylcholine increased 45Ca2+ influx and efflux only slightly, but markedly amplified insulin release. Again, only 100 microM-acetylcholine mobilized enough Ca2+ to trigger a peak of insulin release in the absence of Ca2+. The results thus show that only high concentrations of acetylcholine (greater than or equal to 10 microM) can induce release at low glucose or in a Ca2+-free medium. beta-Cells exhibit their highest sensitivity to acetylcholine in the presence of Ca2+ and stimulatory glucose. Under these physiological conditions, the large amplification of insulin release appears to be the result of combined effects of the neurotransmitter on Ca2+ influx, on intracellular Ca2+ stores and on the efficiency with which Ca2+ activates the releasing machinery.  相似文献   

2.
Understanding mechanisms by which glibenclamide stimulates insulin release is important, particularly given recent promising treatment by glibenclamide of permanent neonatal diabetic subjects. Antidiabetic sulfonylureas are thought to stimulate insulin secretion solely by inhibiting their high-affinity ATP-sensitive potassium (K(ATP)) channel receptors at the plasma membrane of beta-cells. This normally occurs during glucose stimulation, where ATP inhibition of plasmalemmal K(ATP) channels leads to voltage activation of L-type calcium channels for rapidly switching on and off calcium influx, governing the duration of insulin secretion. However, growing evidence indicates that sulfonylureas, including glibenclamide, have additional K(ATP) channel receptors within beta-cells at insulin granules. We tested nonpermeabilized beta-cells in mouse islets for glibenclamide-stimulated insulin secretion mediated by granule-localized K(ATP) channels by using conditions that bypass glibenclamide action on plasmalemmal K(ATP) channels. High-potassium stimulation evoked a sustained rise in beta-cell calcium level but a transient rise in insulin secretion. With continued high-potassium depolarization, addition of glibenclamide dramatically enhanced insulin secretion without affecting calcium. These findings support the hypothesis that glibenclamide, or an increased ATP/ADP ratio, stimulates insulin secretion in part by binding at granule-localized K(ATP) channels that functionally contribute to sustained second-phase insulin secretion.  相似文献   

3.
Addition of pyruvate to rat islets perifused in the presence of 5 mM-glucose elicited an immediate pronounced biphasic stimulation of insulin secretion. At lower concentrations of glucose (2.5 mM), only the initial, transient, phase of secretion was observed. Pyruvate inhibited 45Ca2+ efflux from islets at 2.5 mM-glucose and stimulated efflux at 5 mM-glucose. Pyruvate also decreased the rate of efflux of 86Rb+ from perifused islets. A marked stimulation of insulin secretion and 45Ca2+ efflux rate was observed in response to 3-fluoropyruvate and 3-bromopyruvate, compounds which inhibited oxidative metabolism of [14C]glucose and [14C]pyruvate in islets. The stimulatory effects of 3-fluoro- and 3-bromo-pyruvate were associated with enhanced 86Rb+ efflux. Withdrawal of pyruvate or halogenated analogues from the perfusate resulted in a secondary stimulation of insulin release, 45Ca2+ efflux and, to some extent, 86Rb+ efflux rates. Pyruvate, 3-fluoropyruvate and 3-bromopyruvate were all effective in promoting intracellular acidification and a rise in cytosolic Ca2+ concentration, as judged from fluorescence measurements in HIT-T15 cells loaded with 2',7'-biscarboxyethyl-5'(6')-carboxyfluorescein and Quin 2 respectively. It is proposed that oxidative metabolism of pyruvate is not a prerequisite for its stimulatory actions on pancreatic beta-cells. An alternative mechanism of activation by pyruvate and its halogenated derivatives is proposed, based on the possible electrogenic flux of these anions across the cell membrane.  相似文献   

4.
5.
The role of intracellular calcium stores in stimulus-secretion coupling in the pancreatic beta-cell is largely unknown. We report here that tetracaine stimulates insulin secretion from collagenase-isolated mouse islets of Langerhans in the absence of glucose or extracellular calcium. We also found that the anesthetic evokes a dose-dependent rise of the intracellular free-calcium concentration ([Ca2+]i) in cultured rat and mouse beta-cells. The tetracaine-specific [Ca2+]i rise also occurs in the absence of glucose, or in beta-cells depolarized by exposure to a Ca(2+)-deficient medium (< 1 microM) or elevated [K+]o. Furthermore, tetracaine (> or = 300 microM) depolarized the beta-cell membrane in mouse pancreatic islets, but inhibited Ca2+ entry through voltage-gated Ca2+ channels in HIT cells, an insulin-secreting cell line. From these data we conclude that tetracaine-enhancement of insulin release occurs by mechanisms that are independent of Ca2+ entry across the cell membrane. The tetracaine-induced [Ca2+]i rise in cultured rat beta-cells and insulin secretion from mouse islets is insensitive to dantrolene (20 microM), a drug that inhibits Ca2+ release evoked by cholinergic agonists in the pancreatic beta-cell, and thapsigargin (3 microM), a blocker of the endoplasmic reticulum (ER) Ca2+ pump. We conclude that the Ca2+ required for tetracaine-potentiated insulin secretion is released from intracellular Ca2+ stores other than the ER. Furthermore, tetracaine-induced Ca2+ release was unaffected by the mitochondrial electron transfer inhibitors NaN3 and rotenone. Taken together, these data show that a calcium source other than the ER and mitochondria can affect beta-cell insulin secretion.  相似文献   

6.
B A Wolf  S M Pasquale  J Turk 《Biochemistry》1991,30(26):6372-6379
Free fatty acids in isolated pancreatic islets have been quantified by gas chromatography-mass spectrometry after stimulation with insulin secretagogues. The fuel secretagogue D-glucose has been found to induce little change in islet palmitate levels but does induce the accumulation of sufficient unesterified arachidonate by mass to achieve an increment in cellular levels of 38-75 microM. Little of this free arachidonate is released into the perifusion medium, and most remains associated with the islets. Glucose-induced hydrolysis of arachidonate from islet cell phospholipids is reflected by release of the arachidonate metabolite prostaglandin E2 (PGE2) from perifused islets. Both the depolarizing insulin secretagogue tolbutamide (which is thought to act by inducing closure of beta-cell ATP-sensitive K+ channels and the influx of extracellular Ca2+ through voltage-dependent channels) and the calcium ionophore A23187 have also been found to induce free arachidonate accumulation within and PGE2 release from islets. Surprisingly, a major fraction of glucose-induced eicosanoid release was found not to require Ca2+ influx and occurred even in Ca(2+)-free medium, in the presence of the Ca(2+)-chelating agent EGTA, and in the presence of the Ca2+ channel blockers verapamil and nifedipine. Exogenous arachidonic acid was found to amplify the insulin secretory response of perifused islets to submaximally depolarizing concentrations of KCl, and the maximally effective concentration of arachidonate was 30-40 microM. These observations suggest that glucose-induced phospholipid hydrolysis and free arachidonate accumulation in pancreatic islets are not simply epiphenomena associated with Ca2+ influx and that arachidonate accumulation may play a role in the signaling process which leads to insulin secretion.  相似文献   

7.
Effects of protein kinase C (PKC) activation on the insulin-secretory process were investigated, by using beta-cell-rich suspensions obtained from pancreatic islets of obese-hyperglycaemic mice. The phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA), which is known to activate PKC directly, the muscarinic-receptor agonist carbamoylcholine and high glucose concentration enhanced the phosphorylation of a specific 80 kDa PKC substrate in the beta-cells. At a non-stimulatory glucose concentration, 10 nM-TPA increased insulin release, although there were no changes in either the cytoplasmic free Ca2+ concentration ([Ca2+]i) or membrane potential, as measured with the fluorescent indicators quin-2 and bisoxonol respectively. At a stimulatory glucose concentration TPA caused a lowering in [Ca2+]i, whereas membrane potential was unaffected. Despite the decrease in [Ca2+]i, there was a large stimulation of insulin release. Addition of TPA lowered [Ca2+]i also in beta-cells stimulated by tolbutamide or high K+, although to a lesser extent than in those stimulated by glucose. There was no effect of TPA on either Ca2+ buffering or the ability of Ins(1,4,5)P3 to release Ca2+ in permeabilized beta-cells. However, the phorbol ester inhibited the rise in [Ca2+]i in response to carbamoylcholine, which stimulates the formation of InsP3, in intact beta-cells. Down-regulation of PKC influenced neither glucose-induced insulin release nor the increase in [Ca2+]i. Hence, although PKC activation is of no major importance in glucose-stimulated insulin release, this enzyme can serve as a modulator of the glucose-induced insulin-secretory response. Such a modulation involves mechanisms promoting both amplification of the secretory response and lowering of [Ca2+]i.  相似文献   

8.
In adult beta-cells glucose-induced insulin secretion involves two mechanisms (a) a K(ATP) channel-dependent Ca(2+) influx and rise of cytosolic [Ca(2+)](c) and (b) a K(ATP) channel-independent amplification of secretion without further increase of [Ca(2+)](c). Mice lacking the high affinity sulfonylurea receptor (Sur1KO), and thus K(ATP) channels, have been developed as a model of congenital hyperinsulinism. Here, we compared [Ca(2+)](c) and insulin secretion in overnight cultured islets from 2-week-old normal and Sur1KO mice. Control islets proved functionally mature: the magnitude and biphasic kinetics of [Ca(2+)](c) and insulin secretion changes induced by glucose, and operation of the amplifying pathway, were similar to adult islets. Sur1KO islets perifused with 1 mm glucose showed elevation of both basal [Ca(2+)](c) and insulin secretion. Stimulation with 15 mm glucose produced a transient drop of [Ca(2+)](c) followed by an overshoot and a sustained elevation, accompanied by a monophasic, 6-fold increase in insulin secretion. Glucose also increased insulin secretion when [Ca(2+)](c) was clamped by KCl. When Sur1KO islets were cultured in 5 instead of 10 mm glucose, [Ca(2+)](c) and insulin secretion were unexpectedly low in 1 mm glucose and increased following a biphasic time course upon stimulation by 15 mm glucose. This K(ATP) channel-independent first phase [Ca(2+)](c) rise was attributed to a Na(+)-, Cl(-)-, and Na(+)-pump-independent depolarization of beta-cells, leading to Ca(2+) influx through voltage-dependent calcium channels. Glucose indeed depolarized Sur1KO islets under these conditions. It is suggested that unidentified potassium channels are sensitive to glucose and subserve the acute and long-term metabolic control of [Ca(2+)](c) in beta-cells without functional K(ATP) channels.  相似文献   

9.
In pancreatic islets of fetal rats the effect of glucose (3 and 16.7 mM), glyceraldehyde (10 mM), leucine (20 mM), b-BCH (20 mM), tolbutamide (100 micrograms/ml), glibenclamide (0.5 and 5.0 micrograms/ml) arginine (20 mM), KCl (20 mM) and theophylline (2.5 mM) on 45Ca2+ net uptake and secretion of insulin was studied. All compounds tested failed to stimulate 45Ca2+ net uptake. However, in contrast to glucose and glyceraldehyde, leucine, b-BCH, tolbutamide, glibenclamide, arginine, KCl and theophylline significantly stimulated release of insulin. This effect could not be inhibited by the calcium antagonist verapamil (20 microM). Elevation of the glucose concentration from 3 to 5.6 mM did not alter 86Rb+ efflux of fetal rat islets but inhibited 86Rb+ efflux of adult rat islets. Stimulation of 86Rb+ efflux with tolbutamide (100 micrograms/ml), leucine (20 mM) or b-BCH (20 mM) in the presence of 3 mM glucose was also ineffective in fetal rat islets. Our data suggest that stimulation of calcium uptake via the voltage dependent calcium channel is not possible in the fetal state. They also provide evidence that stimulators of insulin release which are thought not to act through their metabolism, initiate insulin secretion from fetal islets by a mechanism which is different from stimulation of calcium influx.  相似文献   

10.
Hypoglycemic sulfonylureas such as glibenclamide have been widely used to treat type 2 diabetic patients for 40 yr, but controversy remains about their mode of action. The widely held view is that they promote rapid insulin exocytosis by binding to and blocking pancreatic beta-cell ATP-dependent K+ (KATP) channels in the plasma membrane. This event stimulates Ca2+ influx and sets in motion the exocytotic release of insulin. However, recent reports show that >90% of glibenclamide-binding sites are localized intracellularly and that the drug can stimulate insulin release independently of changes in KATP channels and cytoplasmic free Ca2+. Also, glibenclamide specifically and progressively accumulates in islets in association with secretory granules and mitochondria and causes long-lasting insulin secretion. It has been proposed that nutrient insulin secretagogues stimulate insulin release by increasing formation of malonyl-CoA, which, by blocking carnitine palmitoyltransferase 1 (CPT-1), switches fatty acid (FA) catabolism to synthesis of PKC-activating lipids. We show that glibenclamide dose-dependently inhibits beta-cell CPT-1 activity, consequently suppressing FA oxidation to the same extent as glucose in cultured fetal rat islets. This is associated with enhanced diacylglycerol (DAG) formation, PKC activation, and KATP-independent glibenclamide-stimulated insulin exocytosis. The fat oxidation inhibitor etomoxir stimulated KATP-independent insulin secretion to the same extent as glibenclamide, and the action of both drugs was not additive. We propose a mechanism in which inhibition of CPT-1 activity by glibenclamide switches beta-cell FA metabolism to DAG synthesis and subsequent PKC-dependent and KATP-independent insulin exocytosis. We suggest that chronic CPT inhibition, through the progressive islet accumulation of glibenclamide, may explain the prolonged stimulation of insulin secretion in some diabetic patients even after drug removal that contributes to the sustained hypoglycemia of the sulfonylurea.  相似文献   

11.
The insulin-releasing activity of the tropical plant momordica charantia   总被引:2,自引:0,他引:2  
An aqueous extract from the unripe fruits of the tropical plant Momordica charantia was found to be a potent stimulator of insulin release from beta-cell-rich pancreatic islets isolated from obese-hyperglycemic mice. The stimulation of insulin release was partially reversible. It differed from that of D-glucose and other commonly employed insulin secretagogues in not being suppressed by L-epinephrine and in even being potentiated by the removal of Ca2+. This anomalous behaviour was not associated with general effects on the metabolism of the beta-cells as indicated by an unaltered oxidation of D-glucose. Studies of 45Ca fluxes suggest that the insulin-releasing action is the result of perturbations of membrane functions. In support for the idea of direct effects on membrane lipids, the action of the extract was found to mimic that of saponin in inhibiting the Ca2+/H+ exchange mediated by the ionophore A23187 in isolated chromaffin granules and release Ca2+ from preloaded liposomes.  相似文献   

12.
The effects of the hypoglycemic sulfonylureas tolbutamide and glibenclamide on free cytoplasmic Ca2+, [Ca2+]i, were compared with that of a depolarizing concentration of K+ in dispersed and cultured pancreatic beta-cells from ob/ob mice. [Ca2+]i was measured with the fluorescent Ca2+-indicator quin2. The basal level corresponded to 150 nM and increased to 600 nM after exposure to 30.9 mM K+. The corresponding levels after stimulation with 1 microM glibenclamide and 100 microM tolbutamide were 390 and 270 nM respectively. K+ depolarization increased [Ca2+]i more rapidly than either of the sulfonylureas. It is suggested that the increased [Ca2+]i obtained after stimulation by sulfonylureas is due to depolarization of the beta-cells with subsequent entry of Ca2+ through voltage-dependent channels.  相似文献   

13.
Microdissected beta-cell-rich pancreatic islets of non-inbred ob/ob mice were used in studies of how perchlorate (CIO4-) affects stimulus-secretion coupling in beta-cells. CIO4- at 16 mM potentiated D-glucose-induced insulin release, without inducing secretion at non-stimulatory glucose concentrations. The potentiation mainly applied to the first phase of stimulated insulin release. In the presence of 20 mM-glucose, the half-maximum effect of CIO4- was reached at 5.5 mM and maximum effect at 12 mM of the anion. The potentiation was reversible and inhibitable by D-mannoheptulose (20 mM) or Ca2+ deficiency. CIO4- at 1-8 mM did not affect glucose oxidation. The effects on secretion were paralleled by a potentiation of glucose-induced 45Ca2+ influx during 3 min. K+-induced insulin secretion and 45Ca2+ uptake were potentiated by 8-16 mM-CIO4-. The spontaneous inactivation of K+-induced (20.9 mM-K+) insulin release was delayed by 8 mM-CIO4-. The anion potentiated the 45Ca2+ uptake induced by glibenclamide, which is known to depolarize the beta-cell. Insulin release was not affected by 1-10 mM-trichloroacetate. It is suggested that CIO4- stimulates the beta-cell by affecting the gating of voltage-controlled Ca2+ channels.  相似文献   

14.
Neuropeptide W (NPW) is a regulatory peptide that acts via two subtypes of G protein-coupled receptors, GPR7 and GPR8. Evidence has been provided that NPW is involved in the central regulation of energy homeostasis and feeding behavior. In this study, we examined the effects of NPW on insulin release and localization of NPW in the rat pancreas. NPW (10-100 nM) significantly increased insulin release in the presence of 8.3 mM, but not 2.8 mM, glucose in the isolated rat islets. By fura-2 microfluorometry, NPW (1-100 nM) concentration-dependently increased cytosolic Ca(2+) concentration ([Ca(2+)](i)) at 8.3 mM glucose in rat single beta-cells. The NPW-induced [Ca(2+)](i) increase was abolished under external Ca(2+)-free conditions and by an L-type Ca(2+) channel blocker nifedipine (10 microM). RT-PCR analysis revealed that mRNA for NPW was expressed in the rat pancreas and hypothalamus. Double immunohistochemical analysis showed that NPW-immunoreactivity was found in islets and co-localized with insulin-containing beta-cells, but not glucagon-containing alpha-cells and somatostatin-containing delta-cells. These results suggest that NPW could serve as a local modulator of glucose-induced insulin release in rat islets. NPW directly activates beta-cells to enhance Ca(2+) influx through voltage-dependent L-type Ca(2+) channels and potentiates glucose-induced insulin release.  相似文献   

15.
Ca2+-dependent processes are activated by Ba2+ in a variety of biological systems. When Ca2+ was replaced by equimolar amounts of Ba2+ there was a marked increase in insulin secretion from beta-cell-rich pancreatic islets microdissected from ob/ob-mice. At both 3 and 20 mM glucose Ba2+ stimulated insulin release in a concentration-dependent manner, being less stimulatory at high concentrations. The stimulatory effect of Ba2+ on insulin release is similar to that of Ca2+ in being more pronounced and reached at lower concentrations when the beta-cells were sensitized by cyclic AMP. However, both glucose oxidation and utilization were suppressed when Ca2+ was replaced by equimolar amounts of Ba2+. Ba2+-stimulated insulin release resembled physiological secretion initiated by Ca2+ in being inhibited by L-epinephrine, pentobarbital and a low oxygen tension.  相似文献   

16.
Phorbol esters were used to investigate the action of protein kinase C (PKC) on insulin secretion from pancreatic beta-cells. Application of 80 nM phorbol 12-myristate 13-acetate (PMA), a PKC-activating phorbol ester, had little effect on glucose (15 mM)-induced insulin secretion from intact rat islets. In islets treated with bisindolylmaleimide (BIM), a PKC inhibitor, PMA significantly reduced the glucose-induced insulin secretion. PMA decreased the level of intracellular Ca(2+) concentration ([Ca(2+)](i)) elevated by the glucose stimulation when tested in isolated rat beta-cells. This inhibitory effect of PMA was not prevented by BIM. PMA inhibited glucose-induced action potentials, and this effect was not prevented by BIM. Further, 4alpha-phorbol 12,13-didecanoate (4alpha-PDD), a non-PKC-activating phorbol ester, produced an effect similar to PMA. In the presence of nifedipine, the glucose stimulation produced only depolarization, and PMA applied on top of glucose repolarized the cell. When applied at the resting state, PMA hyperpolarized beta-cells with an increase in the membrane conductance. Recorded under the voltage-clamp condition, PMA reduced the magnitude of Ca(2+) currents through L-type Ca(2+) channels. BIM prevented the PMA inhibition of the Ca(2+) currents. These results suggest that activation of PKC maintains glucose-stimulated insulin secretion in pancreatic beta-cells, defeating its own inhibition of the Ca(2+) influx through L-type Ca(2+) channels. PKC-independent inhibition of electrical excitability by phorbol esters was also demonstrated.  相似文献   

17.
The effects of glucose on cytoplasmic free Ca2+ concentration, [Ca2+]i, and insulin release were investigated using pancreatic beta-cells isolated from obese hyperglycemic mice. Measurements of [Ca2+]i were performed in cell suspensions in a cuvette and in single cell-aggregates in a microscopic system, using fura 2 and quin 2. Insulin release was studied from indicator loaded cells in a column perifusion system. In the presence of 1.28 mM extracellular Ca2+, an increase in the glucose concentration from 0 to 20 mM had two major effects on [Ca2+]i. Initially there was a decrease, which was immediately followed by a pronounced increase. At reduced extracellular Ca2+, or when Ca2+ influx was blocked, glucose induced only a decrease in [Ca2+]i. With increasing intracellular concentrations of indicator, the effects of glucose on [Ca2+]i were markedly reduced. Changes in [Ca2+]i, similar effects being obtained in the cuvette and microfluorometric measurements, were paralleled by changes in insulin release. Insulin release from indicator loaded cells did not markedly differ from that of non-loaded controls, either with respect to rapidity or size in the response to the sugar. The addition of 20 mM glucose increased the efflux of fura 2, an effect that was not related to insulin release. Permeabilization of indicator loaded cells demonstrated a substantial amount of fura 2 bound intracellularly. Although the effects of glucose on [Ca2+]i seemed to be similar in fura 2 and quin 2 loaded cells, the demonstrated leakage and possible intracellular binding should be considered before using fura 2 for measurements in pancreatic beta-cells.  相似文献   

18.
Both Ca2+ and cyclic AMP (cAMP) are implicated in the regulation of insulin release in the pancreatic beta cell. In hamster insulinoma cells used in our laboratory to study the mechanism of insulin release, Ca2+ and cAMP trigger secretion independently. Concomitant with stimulation of the secretory apparatus both cAMP and Ca2+ promote phosphorylation of distinct insulinoma cell proteins. Calmodulin may be involved in the stimulation of insulin release and protein phosphorylation induced by Ca2+ influx. The Ca2+-dependent protein kinase of the insulinoma cell is activated by exogenous calmodulin and blocked by trifluoperazine, and inhibitor of calmodulin action. This drug also inhibits glucose-induced insulin release in pancreatic islets. In insulinoma cells trifluoperazine blocks Ca2+ influx-mediated insulin release and protein phosphorylation with no effect on basal or cAMP-mediated insulin release and protein phosphorylation with no effect on basal or cAMP-mediated secretion. Inhibition of Ca2+ influx-mediated insulin release and protein phosphorylation occurs with nearly identical dose dependence. Inasmuch as trifluoperazine affects voltage-dependent Ca2+ uptake in insulinoma cells, an involvement of calmodulin cannot be directly inferred. The evidence suggests that protein phosphorylation may be involved in the activation of the secretory apparatus by both cAMP and Ca2+. It is proposed that stimulation of insulin release by cAMP and Ca2+ is mediated by cAMP-dependent protein kinase and calmodulin-dependent protein kinase, respectively.  相似文献   

19.
The release of sPLA(2) from single mouse pancreatic beta-cells was monitored using a fluorescent substrate of the enzyme incorporated in the outer leaflet of the plasma membrane. Stimulation of beta-cells with agents that increased cytosolic free Ca(2+) concentration ([Ca(2+)](i)) induced a rapid release of sPLA(2) to the extracellular medium. Exogenous sPLA(2) strongly stimulated insulin secretion in mouse pancreatic islets at both basal and elevated glucose concentrations. The stimulation of insulin secretion by sPLA(2) was mediated via inhibition of ATP-dependent K(+) channels and an increase in [Ca(2+)](i). Measurements of cell capacitance in single beta-cells revealed that sPLA(2) did not modify depolarisation-induced exocytosis. Our data suggest that a positive feedback regulation of insulin secretion by co-released sPLA(2) is operational in pancreatic beta-cells and point to this enzyme as an autocrine regulator of insulin secretion.  相似文献   

20.
L-type voltage-gated Ca2+ channels (Cav1.2) mediate a major part of insulin secretion from pancreatic beta-cells. Cav1.2, like other voltage-gated Ca2+ channels, is functionally and physically coupled to synaptic proteins. The tight temporal coupling between channel activation and secretion leads to the prediction that rearrangements within the channel can be directly transmitted to the synaptic proteins, subsequently triggering release. La3+, which binds to the polyglutamate motif (EEEE) comprising the selectivity filter, is excluded from entry into the cells and has been previously shown to support depolarization-evoked catecholamine release from chromaffin and PC12 cells. Hence, voltage-dependent trigger of release relies on Ca2+ ions bound at the EEEE motif and not on cytosolic Ca2+ elevation. We show that glucose-induced insulin release in rat pancreatic islets and ATP release in INS-1E cells are supported by La3+ in nominally Ca2+-free solution. The release is inhibited by nifedipine. Fura 2 imaging of dispersed islet cells exposed to high glucose and La3+ in Ca2+-free solution detected no change in fluorescence; thus, La3+ is excluded from entry, and Ca2+ is not significantly released from intracellular stores. La3+ by interacting extracellularlly with the EEEE motif is sufficient to support glucose-induced insulin secretion. Voltage-driven conformational changes that engage the ion/EEEE interface are relayed to the exocytotic machinery prior to ion influx, allowing for a fast and tightly regulated process of release. These results confirm that the Ca2+ channel is a constituent of the exocytotic complex [Wiser et al. (1999) PNAS 96, 248-253] and the putative Ca2+-sensor protein of release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号