首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chromosome locations of the eight SOX family genes, SOX1, SOX2, SOX3, SOX5, SOX9, SOX10, SOX14 and SOX21, were determined in the chicken by fluorescence in situ hybridization. The SOX1 and SOX21 genes were localized to chicken chromosome 1q3.1-->q3.2, SOX5 to chromosome 1p1.6-->p1.4, SOX10 to chromosome 1p1.6, and SOX3 to chromosome 4p1.2-->p1.1. The SOX2 and SOX14 genes were shown to be linked to chromosome 9 using two-colored FISH and chromosome painting, and the SOX9 gene was assigned to a pair of microchromosomes. These results suggest that these SOX genes form at least three clusters on chicken chromosomes. The seven SOX genes, SOX1, SOX2, SOX3, SOX5, SOX10, SOX14 and SOX21 were localized to chromosome segments with homologies to human chromosomes, indicating that the chromosome locations of SOX family genes are highly conserved between chicken and human.  相似文献   

2.
A panel of somatic cell hybrid cell lines containing different parts of human chromosome 20 and fluorescence in situ hybridization have been used to physically localize markers to human chromosome 20. Through these complementary approaches and genetic linkage analysis, D20S16, which is closely linked to the maturity onset diabetes of the young (MODY) locus, was mapped to band 20q12 --> q13.1. The gene for growth hormone-releasing factor (GHRF) was physically mapped and reassigned to 20q11, suggesting that GHRF plays no direct role in MODY. In addition, the genes for the chromosome 20-linked glycogen phosphorylase (GYPB) and the bone morphogenetic protein (BMP2A) have been assigned to chromosome 20p, and the interleukin-6-dependent DNA-binding protein (TCF5) has been assigned to 20q12 --> q13 by hybridization to genomic DNA from the panel of somatic cell hybrid cell lines. These approaches are useful for rapid localization of candidate genes for MODY and other DNA markers mapped to chromosome 20.  相似文献   

3.
Two members of the zinc finger Krüppel family, ZNF24 (KOX17) and ZNF29 (KOX26), have been localized by somatic cell hybrid analysis and in situ chromosomal hybridization to human chromosomes 18q12 and 17p13-p12, respectively. The mapping of ZNF29 together with the previously reported localization of ZFP3 suggests that a zinc finger gene complex is located on human chromosome 17p. ZNF29 maps centromeric to the human p53 tumor antigen gene (TP53). In the analogous murine position, the two mouse zinc finger genes Zfp2 and Zfp3 have recently been assigned to the distal region of mouse chromosome 11, the murine homolog of human chromosome 17. Both human zinc finger genes ZNF24 and ZNF29 are in chromosomal regions that have been noted to be deleted in neoplasms of the lung and of the central nervous system at chromosome 17p and in colorectal neoplasia at chromosomes 17p and 18q.  相似文献   

4.
By fluorescence in situ hybridization (FISH) using mouse probes, we assigned homologues for cathepsin E (Ctse), protocadherin 10 (Pcdh10, alias OL-protocadherin, Ol-pc), protocadherin 13 (Pcdh13, alias protocadherin 2c, Pcdh2c), neuroglycan C (Cspg5) and myosin X (Myo10) genes to rat chromosomes (RNO) 13q13, 2q24-->q25, 18p12-->p11, 8q32.1 and 2q22.1-->q22.3, respectively. Similarly, homologues for mouse Ctse, Pcdh13, Cspg5 and Myo10 genes and homologues for rat Smad2 (Madh2) and Smad4 (Madh4) genes were assigned to Chinese hamster chromosomes (CGR) 5q28, 2q17, 4q26, 2p29-->p27, 2q112-->q113 and 2q112-->q113, respectively. The chromosome assignments of homologues of Ctse and Cspg5 reinforced well-known homologous relationships among mouse chromosome (MMU) 1, RNO 13 and CGR 5q, and among MMU 9, RNO 8 and CGR 4q, respectively. The chromosome locations of homologues for Madh2, Madh4 and Pcdh13 genes suggested that inversion events were involved in chromosomal rearrangements in the differentiation of MMU 18 and RNO 18, whereas most of MMU 18 is conserved as a continuous segment in CGR 2q. Furthermore, the mapping result of Myo10 and homologues suggested an orthologous segment of MMU 15, RNO 2 and CGR 2.  相似文献   

5.
The homeobox 2 (HOX2) and homeobox 3 (HOX3) clusters have been chromosomally assigned in cattle by in situ hybridization. The probes employed were a murine probe for the mapping of HOX2 to 19q17-qter and human probes for the mapping of HOX3 to 5q14-q23. These assignments confirm the chromosomal assignment of two syntenic groups, consisting of loci located on human chromosome 12 (bovine chromosome 5) and the long arm of human chromosome 17 (bovine chromosome 19).  相似文献   

6.
Adrenomedullin (AM) and calcitonin gene-related peptide (CGRP) are potent vasodilator peptides and serve as ligands for the G-protein coupled receptor (GPCR) calcitonin receptor-like receptor (CLR/Calcrl). Three GPCR accessory proteins called receptor activity-modifying proteins (RAMPs) modify the ligand binding affinity of the receptor such that the CLR/RAMP1 heterodimer preferably binds CGRP, while CLR/RAMP2 and CLR/RAMP3 have a stronger affinity for AM. Here we determine the contribution of each of the three RAMPs to blood pressure control in response to exogenous AM and CGRP by measuring the blood pressure of mice with genetic reduction or deletion of the receptor components. Thus, the cardiovascular response of Ramp1−/−, Ramp2+/−, Ramp3−/−, Ramp1−/−/Ramp3−/− double-knockout (dKO), and Calcrl+/− mice to AM and CGRP were compared to wildtype mice. While under anesthesia, Ramp1−/− male mice had significantly higher basal blood pressure than wildtype males; a difference which was not present in female mice. Additionally, anesthetized Ramp1−/−, Ramp3−/−, and Calcrl+/− male mice exhibited significantly higher basal blood pressure than females of the same genotype. The hypotensive response to intravenously injected AM was greatly attenuated in Ramp1−/− mice, and to a lesser extent in Ramp3−/− and Calcrl+/− mice. However, Ramp1−/−/Ramp3−/− dKO mice retained some hypotensive response to AM. These results suggest that the hypotensive effect of AM is primarily mediated through the CLR/RAMP1 heterodimer, but that AM signaling via CLR/RAMP2 and CLR/RAMP3 also contributes to some hypotensive action. On the other hand, CGRP’s hypotensive activity seems to be predominantly through the CLR/RAMP1 heterodimer. With this knowledge, therapeutic AM or CGRP peptides could be designed to cause less hypotension while maintaining canonical receptor-RAMP mediated signaling.  相似文献   

7.
8.
Loci affecting swine intramuscular fat content, backfat thickness, carcass weight, and daily weight gain were assigned to regions of swine chromosome (SSC) 4, which were shown to correspond to human chromosome (HSA) 1p22--> q25 by ZOO-FISH, bidirectional chromosome painting, as well as by the linkage map of genes. In order to select candidate genes responsible for the above traits from the human genome database, precise correspondence between SSC4 and HSA1 is a prerequisite. In the present study, 27 genes, PTGFR, GBP1, GBP2, GFI1, GCLM, ABCD3, EXTL2, KCNA3, ADORA3, KCND3, WNT2B, NRAS, SYCP1, PTGFRN, IGSF2, NOTCH2, S100A10, SHC1, SSR2, LMNA, CCT3, CD5L, PEA15, FCER1G, EAT2, DDR2, and LAMB3, located in the HSA1 region corresponding to SSC4 or possibly SSC4, were assigned to the IMpRH map. The alignment of genes from centromere to telomere in the SSC4 q arm is basically conserved in HSA1p22-->q25 with the direction from the q arm to the p arm, which is in good agreement with results from linkage mapping. In addition, the present study first demonstrated that WNT2B residing in the middle of the HSA1 region was assigned to SSC18 with a high lod score (> 5), and that at least three intrachromosomal rearrangements occurred in the region in the process of swine and human evolution. PTGFR, and LAMB3 localized at both ends of the HSA1 region were assigned to SSC6 and SSC9, respectively, which is consistent with regional correspondence reported earlier. In the course of the above analysis, microsatellite markers were developed in the proximity of eleven genes localized on SSC4, and three genes on other swine chromosomes.  相似文献   

9.
Receptor activity-modifying protein-2 (RAMP2) is a single-pass transmembrane protein that can regulate the trafficking, ligand binding, and signaling of several G protein-coupled receptors (GPCR). The most well-characterized role of RAMP2 is in the regulation of adrenomedullin (AM) binding to calcitonin receptor-like receptor (CLR), and our previous studies using knockout mouse models support this canonical signaling paradigm. For example, Ramp2(-/-) mice die at midgestation with a precise phenocopy of the AM(-/-) and Calcrl(-/-) mice. In contrast, Ramp2(+/-) mice are viable and exhibit an expanded variety of phenotypes that are distinct from those of Calcrl(+/-) mice. Using Ramp2(+/-) female mice, we demonstrate that a modest decrease in Ramp2 expression causes severe reproductive defects characterized by fetal growth restriction, fetal demise, and postnatal lethality that is independent of the genotype and gender of the offspring. Ramp2(+/-) female mice also exhibit hyperprolactinemia during pregnancy and in basal conditions. Consistent with hyperprolactinemia, Ramp2(+/-) female mice have enlarged pituitary glands, accelerated mammary gland development, and skeletal abnormalities including delayed bone development and decreased bone mineral density. Because RAMP2 has been shown to associate with numerous GPCR, it is likely that signaling of one or more of these GPCR is compromised in Ramp2(+/-) mice, yet the precise identification of these receptors remains to be elucidated. Taken together, this work reveals an essential role for RAMP2 in endocrine physiology and provides the first in vivo evidence for a physiological role of RAMP2 beyond that of AM/CLR signaling.  相似文献   

10.
The sites of sequences homologous to a murine cDNA for ribonucleotide reductase (RR) subunit M2 were determined on human and murine chromosomes by Southern blot analysis of interspecies somatic cell hybrid lines and by in situ hybridization. In the human genome, four chromosomal sites carrying RRM2-related sequences were identified at 1p31----p33, 1q21----q23, 2p24----p25, and Xp11----p21. In the mouse, M2 sequences were found on chromosomes 4, 7, 12, and 13 by somatic cell hybrid studies. By Southern analysis of human hydroxyurea-resistant cells that overproduce M2 because of gene amplification, we have identified the amplified restriction fragments as those that map to chromosome 2. To further confirm the site of the functional RRM2 locus, two other cDNA clones, p5-8 and S7 (coding for ornithine decarboxylase; ODC), which are coamplified with RRM2 sequences in human and rodent hydroxyurea-resistant cell lines, were mapped by Southern and in situ hybridization. Their chromosomal map positions coincided with the region of human chromosome 2 (p24----p25) that also contains one of the four RRM2-like sequences. Since this RRM2 sequence and p5-8 and ODC are most likely part of the same amplification unit, the RRM2 structural gene can be assigned to human chromosome 2p24----p25. This region is homologous to a region of mouse chromosome 12 that also carries one of numerous ODC-like sequences. In an RRM2-overproducing mouse cell line, we found amplification of the chromosome 12-specific restriction fragments. Thus, we conclude that mouse chromosome 12 carries the functional locus for RRM2.  相似文献   

11.
人细胞生长相关5个新基因的染色体定位及其基因结构   总被引:1,自引:1,他引:0  
基因的染色体定位对我们研究基因相互关系、基因的组织与进化及理解基因与疾病关系具有重要的意义。本文采用RH-PCR方法及生物信息学方法对PP3898、PP1158、PP753、SP260、HC56等5条人细胞生长相关新基因进行染色体定位,并分析了其基因结构。PP3898及PP1158定位于19p13.3,PP753及SP260定位于1q21.1,HC56定位于17p13.3。PP3898含有19个外显子和18个内含子,可读框为2565bp;PP1158含有7个外显子和6个内含子,可读框为1218bp;SP260含有10个外显子和9个内含子,可读框为690bp;HC56为单外显子,可读框为3141bp。另外,对染色体定位获得的信息进行了分析。 Abstract:Five novel human genes related to cell growth control were newly isolated and identified by high-throughput functional screening.In this paper,the chromosomal localization of these five genes is reported.Radiation hybrid mapping and in silico mapping,and their genomic organization were analyzed respectively.PP3898 and PP1158 were assigned to chromosome 19p13.3,SP260 and PP753 to chromosome 1q21.1,and HC56 to chromosome 17p13.3.PP3898 contains nineteen exons and eighteen introns,PP1158 seven exons and six introns,SP260 ten exons and nine introns,and HC56 only one exon.The implications of chromosomal localization are discussed.  相似文献   

12.
TBC1D1 is the founding member of a family of related proteins with homology to tre-2/UPS6, BUB2, and cdc16 and containing the tbc box motif of 180-220 amino acids. This protein family is thought to have a role in differentiation and in regulating cell growth. We set out to map the TBC1D1 gene in mouse and human. Segregation analysis of a TBC1D1 RFLP in two independent mouse RI (recombinant inbred) lines reveals that mouse Tbc1d1 is closely linked to Pgm1 on chromosome 5. The human TBC1D1 gene was assigned to human chromosome 4p15.1-->4q21 using Southern blot analyses of genomic DNAs from rodent-human somatic cell lines. A human-specific genomic fragment was observed in the somatic cell lines containing human chromosome 4 or the 4p15.1-->4q21 region of the chromosome. TBC1D1 maps to the region containing the ortholog of mouse Pgm1 adding another locus to this long region of conserved synteny between mouse and man.  相似文献   

13.
Gab1 and Gab2 are members of the Gab family which act as adapters for transmitting various signals in response to stimuli through cytokine and growth factor receptors, and T- and B-cell antigen receptors. We determined chromosome locations of the two genes in human, mouse and rat by fluorescence in situ hybridization. The Gab1 gene was localized to chromosome 4q31.1 in human, 8C3 in mouse and 19q11.1--> q11.2 in rat, and the Gab2 gene was located on chromosome 11q13.4-->q13.5 in human, 7E2 in mouse and 1q33.2-->q33.3 in rat. All human, mouse and rat Gab1 and Gab2 genes were localized to chromosome regions where conserved homology has been identified among the three species.  相似文献   

14.
Many eukaryotic cell surface proteins are anchored to the membrane with glycosylphosphatidylinositol (GPI) that is covalently linked to the carboxyl-terminus. A Saccharomyces cerevisiae gaa1 mutant is defective in posttranslational attachment of GPI to proteins. A recent report demonstrated that the GPAA1 gene encodes a component of a transamidase that mediates GPI-anchor attachment. Here, we report structures and chromosome loci of human and mouse GPAA1 genes. Both genes consist of twelve exons that span about 4 kb. Human and mouse GPAA1s are located at 8q24.3 and 15E, respectively. There is a human pseudo GPAA1 gene (GPAA1P1) that is located at 2q12-->q14. Introns 8 of human and mouse GPAA1s were minor class introns bearing AT at the 5' splice sites and AC and AT at the 3' splice sites, respectively. The 3' splice sites of corresponding introns of African green monkey, Chinese hamster, dog and rat were AC, AT, AT and AA, respectively. The mouse GPAA1 gene (Gpaa1) bearing AG at the 3' splice site prepared by site-directed mutagenesis was functional, indicating that any nucleotide is allowed at the 3' end of a minor class intron.  相似文献   

15.
We report on a currently six-year-old patient with a de novo complex chromosome rearrangement (CCR) involving chromosomes 2 and 12. A translocation 2;12 that appeared to be reciprocal after standard banding turned out to be a complex event with seven breaks after molecular cytogenetic analyses. Array CGH analysis showed no imbalances at the breakpoints but revealed an additional microdeletion of about 80 kb on chromosome 11. The same deletion was also present in the phenotypically normal father. The patient showed relatively mild mental retardation, defined mainly as impaired speech development (orofacial dyspraxia) and psychomotor retardation. In addition, mild dysmorphic facial features like hypertelorism, a prominent philtrum and down-turned corners of the mouth were observed. We narrowed down all breakpoint regions to about 100 kb, using a panel of mapped bacterial artificial chromosome (BAC) clones for fluorescence in situ hybridization (FISH). BACs spanning or flanking all seven breakpoints were identified and no chromosomal imbalances were found consistent with the array CGH results. Our investigations resulted in the following karyotype: 46,XY,t(2;12)(2pter-->2p25.3::2p23.3-->2p25.2::2p23.3-->2p14::2q14.3-->2p14::2q14.3-->2q14.3::12q 12-->12qter;12pter-->12q12::2p25.3-->2p25.2::2q14.3-->2qter).  相似文献   

16.
Murine cDNA clones for three cyclin D genes that are normally expressed during the G1 phase of the cell cycle were used to clone the cognate human genes. Bacteriophage and cosmid clones encompassing five independent genomic loci were partially sequenced and chromosomally assigned by an analysis of somatic cell hybrids containing different human chromosomes and by fluorescence in situ hybridization to metaphase spreads from normal peripheral blood lymphocytes. The human cyclin D1 gene (approved gene symbol, CCND1) was assigned to chromosome band 11q13, cyclin D2 (CCND2) to chromosome band 12p13, and cyclin D3 (CCND3) to chromosome band 6p21. Pseudogenes containing sequences related to cyclin D2 and cyclin D3 mapped to chromosome bands 11q13 and 6p21, respectively. Partial nucleotide sequence analysis of exons within each gene revealed that the authentic human cyclin D genes are more related to their mouse counterparts than to each other. These genes are ubiquitously transcribed in human tumor cell lines derived from different cell lineages, but are independently and, in many cases, redundantly expressed. The complex patterns of expression of individual cyclin D genes and their evolutionary conservation across species suggest that each family member may play a distinct role in cell cycle progression.  相似文献   

17.
The PAX8 gene, a member of the human paired box gene family, was mapped by FISH to chromosome 11 in cattle and goat and to the short arm of chromosome 3 in sheep. The cytogenetic position of PAX8 on BTA 11 and on its homologue OAR 3p lies in the region where the interleukin beta (IL1B) gene has been previously located, (BTA 11q22. 1-->q22.3 and OAR 3p25-->q26 respectively; Lòpez-Corrales et al., 1998). The results indicated that PAX8 as well as interleukin beta and interleukin alpha (IL1B and IL1A) genes detected on the human chromosome segment HSA 2q13-->q21 maintain a similar order and location in these three related species. In addition, the breakpoint in conserved synteny can now be narrowed to a position between the protein C (PROC) and PAX8 genes, which lie in close proximity on HSA 2.  相似文献   

18.
Summary Spi1 is an oncogene specifically activated in acute murine erythroleukemias induced by the Friend spleen focus forming virus (SFFV). Three probes were used for the chromosomal assignment of the human SPI1 oncogene: cDb1 and RaB2 correspond respectively to murine Spi1 and human SPI1 cDNA probes; C45a6B probe is a murine genomic DNA sequence located in the Spi1 5 region and is known as a major SFFV integration site in murine erythroleukemia cells. Somatic hybrid cells enabled cDb1 and RaB2 to be assigned to chromosome 11. The murine C45a6B probe, which is not included in the Spi1 gene, detected a homologous sequence on human chromosome 11. RaB2 was assigned to 11p 11.22 by in situ hybridization. Three human genes known between 11p11 and 11p13 (FSHB, CAT, ACP2) were on murine chromosome 2. Therefore, the localization of human SPI1 on 11p11.22 was consistent with the assignment of the Spi1 oncogene to murine chromosome 2.The nomenclature used in this paper conforms to the recommendations of Human Gene Mapping 10 (1989); for man SPI1, for mouse Spi1  相似文献   

19.
Murine Gtse-1 (G(2) and S phase expressed protein), previously named B99, is a wt-p53 inducible gene that encodes a microtubule-localized protein which is able to induce G(2)/M phase accumulation when ectopically expressed. Here we report the cloning and characterization of a new cDNA (GTSE-1) encoding a human homologue of the mouse Gtse-1 protein. Chromosome mapping of mouse and human genes assigned Gtse-1 to chromosome 15 and GTSE-1 to chromosome 22q13.2-q13.3 in a region with conserved synteny to that where Gtse-1 mapped. Analysis of the genomic structure revealed that GTSE-1 contains at least 11 exons and 10 introns, spanning approximately 33kb of genomic DNA. Similar to murine Gtse-1, the product of GTSE-1 localized to the microtubules, was able to delay G(2)/M progression when ectopically expressed and was cell cycle regulated. Taken together, these results indicate GTSE-1 as the human functional homologue of murine Gtse-1.  相似文献   

20.
《Gene》1997,184(2):163-167
Mouse Ocp2-rs2 maps to chromosome 11 and encodes an 18.6 kDa peptide abundantly expressed in the organ of Corti. We show that sequences similar to murine Ocp2-rs2 are found on human chromosomes 4p16.2-4p14, 5p13-5q35.2, 7pter-q22, 10 and 12p13-12qter as revealed by Southern blot analyses of human/rodent somatic cell hybrids. A fetal human inner ear cDNA library was screened with a cloned 254 bp PCR product of murine Ocp2-rs2. One of two human cDNA clones (CM1) was sequenced from the 5′ end that begins with murine Ocp2-rs2 codon 14 through the stop codon and 258 nucleotides of 3′-UTR and was found to have the identical deduced amino acid sequence to Ocp2-rs2. Based on the sequence in the 3′-UTR of CM1, a PCR primer pair was synthesized and used to confirm that a human homologue of Ocp2-rs2, designated OCP2 and expressed in the developing human inner ear, is localized to 5q22-5q35.2. Other OCP2-like sequences located on chromosomes 4p16.2-4p14, 7pter-q22 and 12p13-12qter (but not the chromosome 10 OCP2-like sequence) will PCR amplify the expected size product at a lower annealing temperature using the OCP2 3′-UTR PCR primers indicating that there may be a human OCP2 gene family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号