首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Long repeated stretches of d(CCG) and tri-nucleotide are crucial mutations that cause hereditary forms of mental retardation (fragile X-syndrome). Moreover, the alternating (CG) di-nucleotide is one of the candidates for Z-DNA conformation. Solution NMR structure of d(CCGCGG)(2) has been solved and is discussed. The determined NMR solution structure is a distorted highly bent B-DNA conformation with increased flexibility in both terminal residues. This conformation differs significantly from the Z-DNA tetramer structure reported for the same hexamer in the crystal state at similar ionic strength by Malinina and co-workers. Crystal structure of d(CCGCGG)(2) at high salt concentration includes a central alternating tetramer in Z-DNA conformation, while the initial cytosine swings out and forms a Watson-Crick base-pair with the terminal guanine of a symmetry-related molecule. In solution, NMR data for sugar ring puckering combined with restrained molecular dynamics simulations starting from a Z-DNA form show that terminal furanose residues could adopt the conformation required for aromatic bases swinging out. Therefore, tetramer formation could be considered possible once the hexanucleotide had previously adopted the Z-DNA form. This work gives some insight into correlations between anomalous crystal structures and their accessibility in the solution state.  相似文献   

3.
The CTG repeat of the myotonic dystrophy (MD) gene was analyzed in 62 MD patients and 54 healthy members of their families. A CTG repeat expansion was revealed in 57 (92%) patients and in 12 relatives who did not express clinical signs of MD. Family analysis showed that the CTG repeat number increased, which was associated with anticipation, decreased, or remained the same (17.6%) in alleles transmitted from parents to their children. The spontaneous mutation rate of the CTG repeat was estimated at 4 x 10(-2). Instability was characteristic of alleles with more than 19 repeated units.  相似文献   

4.
A screening procedure based on the formation of papillae on individual bacterial colonies was used to isolate mutants of Escherichia coli with high mutation rates in the presence of bromouracil. Most of the mutants obtained had high spontaneous mutation rates and mapped close to the previously known mutators mutT, mutS, mutR, uvrE and mutL. Except for mutants of mutT type, these mutators also showed high mutability by bromouracil. Transfection experiments were performed with heteroduplex lambda DNA to test for mismatch repair. The results suggest a reduced efficiency of repair of mismatched bases in mutators mutS, mutR, uvrE and mutL, whereas mutants mapping as mutT appear normal. The results support a connection between spontaneous and bromouracil-induced mutability and repair of mismatched bases in DNA.  相似文献   

5.
Microsatellites are DNA elements composed of short tandem repeats of 1-5bp. These sequences are particularly prone to frameshift mutation by insertion-deletion loop formation during replication. The mismatch repair system is responsible for correcting these replication errors, and microsatellite mutation rates are significantly elevated in the absence of mismatch repair. We have investigated the effect of varying the number of repeats in a (CA)n microsatellite on mutation rates in cultured mammalian cells proficient or deficient in mismatch repair. We have also compared the relative rates of single-repeat insertions and deletions in these cells. Two plasmid vectors were constructed for each repeat unit number (n=8, 17, and 30), such that the microsatellites, placed upstream of a bacterial neomycin resistance gene (neo), disrupted the reading frame of the gene in the (-1) or (+1) direction. Plasmids were introduced separately into the cells, where they integrated into the cellular genome. Mutation rates were determined by selection of clones with frameshift mutations in the microsatellite that restored the reading frame of the neo gene. We found that mutation rates were significantly higher for (CA)17 and (CA)30 tracts than for (CA)8 tracts in both mismatch repair proficient (mouse) and deficient (human) cells. A mutational bias favoring insertions was generally observed. In both (CA)17 and (CA)30 tracts, single-repeat insertion rates were higher than single-repeat deletion rates with or without mismatch repair; deletions of multiple repeat units (> or =8bp) were observed in these tracts, where as deletions this large were not found in the (CA)8 tract. Single-repeat mutations of both types were made at similar rates in (CA)8 tracts in human mismatch repair deficient (MMR-) cells, but single-repeat insertion rates were higher than single-repeat deletion rates in mouse mismatch repair proficient (MMR+) cells. Results of these direct studies on microsatellite mutations in cultured cells should be useful for refinement of mathematical models for microsatellite evolution.  相似文献   

6.
Myotonic dystrophy (DM) is an inherited, autosomal dominant muscular disease which is primarily caused by a CTG trinucleotide expansion mutation on chromosome 19q13.3. The size of this trinucleotide repeat is related both to the age of onset and to the severity of the clinical manifestation. This disease is very rare in Taiwan, and clinical and genetic study on DM has not yet been documented in this area. Here, we present both clinical features and degrees of CTG expansion for a Taiwanese DM family. All of the DM patients examined in this family showed obvious clinical manifestations by age 30, which included facial and limb muscle weakness with atrophy, myotonia, and ptosis. In addition, individual DM members also exhibited variable phenotypes, which may reflect the complexity of the pathogenic mechanism. Because the collection of blood specimens was considered to be an invasive procedure, a genetic study on this DM family was performed using buccal cells. Our results confirmed that four members showing classic symptoms of DM had CTG repeat expansion in the DMI locus, and that one member with ptosis and minor muscle weakness in the right foot was a normal homozygote for CTG repeat. These data demonstrate that buccal cells can provide clear and reliable results, and thus, are suitable for a family study of DM.  相似文献   

7.
Common fragile sites (CFS) are specific chromosomal areas prone to form gaps and breaks when cells are exposed to stresses that affect DNA synthesis, such as exposure to aphidicolin (APC), an inhibitor of DNA polymerases. The APC-induced DNA damage is repaired primarily by homologous recombination (HR), and RAD51, one of the key players in HR, participates to CFS stability. Since another DNA repair pathway, the mismatch repair (MMR), is known to control HR, we examined the influence of both the MMR and HR DNA repair pathways on the extent of chromosomal damage and distribution of CFS provoked by APC and/or by RAD51 silencing in MMR-deficient and -proficient colon cancer cell lines (i.e., HCT-15 and HCT-15 transfected with hMSH6, or HCT-116 and HCT-116/3+6, in which a part of a chromosome 3 containing the wild-type hMLH1 allele was inserted). Here, we show that MMR-deficient cells are more sensitive to APC-induced chromosomal damage particularly at the CFS as compared to MMR-proficient cells, indicating an involvement of MMR in the control of CFS stability. The most expressed CFS is FRA16D in 16q23, an area containing the tumour suppressor gene WWOX often mutated in colon cancer. We also show that silencing of RAD51 provokes a higher number of breaks in MMR-proficient cells with respect to their MMR-deficient counterparts, likely as a consequence of the combined inhibitory effects of RAD51 silencing on HR and MMR-mediated suppression of HR. The RAD51 silencing causes a broader distribution of breaks at CFS than that observed with APC. Treatment with APC of RAD51-silenced cells further increases DNA breaks in MMR-proficient cells. The RNAi-mediated silencing of PARP-1 does not cause chromosomal breaks or affect the expression/distribution of CFS induced by APC. Our results indicate that MMR modulates colon cancer sensitivity to chromosomal breaks and CFS induced by APC and RAD51 silencing.  相似文献   

8.
DNA mismatch repair detected in human cell extracts.   总被引:8,自引:5,他引:3       下载免费PDF全文
A system to study mismatch repair in vitro in HeLa cell extracts was developed. Preformed heteroduplex plasmid DNA containing two single base pair mismatches within the SupF gene of Escherichia coli was used as a substrate in a mismatch repair assay. Repair of one or both of the mismatches to the wild-type sequence was measured by transformation of a lac(Am) E. coli strain in which the presence of an active supF gene could be scored. The E. coli strain used was constructed to carry mutations in genes associated with mismatch repair and recombination (mutH, mutU, and recA) so that the processing of the heteroduplex DNA by the bacterium was minimal. Extract reactions were carried out by the incubation of the heteroduplex plasmid DNA in the HeLa cell extracts to which ATP, creatine phosphate, creatine kinase, deoxynucleotides, and a magnesium-containing buffer were added. Under these conditions about 1% of the mismatches were repaired. In the absence of added energy sources or deoxynucleotides, the activity in the extracts was significantly reduced. The addition of either aphidicolin or dideoxynucleotides reduced the mismatch repair activity, but only aphidicolin was effective in blocking DNA polymerization in the extracts. It is concluded that mismatch repair in these extracts is an energy-requiring process that is dependent on an adequate deoxynucleotide concentration. The results also indicate that the process is associated with some type of DNA polymerization, but the different effects of aphidicolin and dideoxynucleotides suggest that the mismatch repair activity in the extracts cannot simply be accounted for by random nick-translation activity alone.  相似文献   

9.
Myotonic dystrophy (DM) is genetically characterized by abnormal expansion of an unstable CTG trinucleotide repeat, located in the 3′-untranslated region of mRNA encoding the family of serine-threonine protein kinases. DNA extracted from various organs of patients with DM was analyzed by the Southern blotting method. We identified differently expanded bands in DNAs from various tissues from patients with DM. In studying the length of the CTG repeat in different regions of the brain, we found a noticeably small increase in repeat length in the cerebellum compared with other tissues. While this phenomenon has been reported in other triplet repeat diseases such as Huntington disease, spinocerebellar ataxia type 1, and dentatorubral-pallidoluysian atrophy, we are the first to describe it in DM. Although the mechanism of expansion of the triplet repeat remains to be defined, the tissue-dependent somatic mosaicism suggests that its occurrence may depend on the differentiated state of each tissue. Received: 18 October 1995 / Revised: 20 March 1996  相似文献   

10.
11.
The mutD (dnaQ) gene of Escherichia coli codes for the proofreading activity of DNA polymerase III. The very strong mutator phenotype of mutD5 strains seems to indicate that their postreplicational mismatch repair activity is also impaired. We show that the mismatch repair system of mutD5 strains is functional but saturated, presumably by the excess of DNA replication errors, since it is recovered by inhibiting chromosomal DNA replication. This recovery depends on de novo protein synthesis.  相似文献   

12.
Loss of a functional mismatch repair (MMR) system in colorectal cancer (CRC) cells is associated with microsatellite instability and increased sensitivity to topoisomerase inhibitors. In this study, we have investigated whether a defect in double-strand break (DSB) repair by non-homologous end-joining (NHEJ) could explain why MMR-deficient CRC cells are hypersensitive to camptothecin (CPT), a topoisomerase I inhibitor. To evaluate the efficiency and the fidelity of DSB repair, we have transiently transfected plasmids containing cohesive or non-complementary ends in cells with various MMR defects. We have observed that the repair efficiency of DSB with cohesive and non-complementary ends is comparable in all cell lines. In contrast to the MMR-proficient cell line HT29, the MMR-deficient cell lines were highly accurate in repairing DSB with cohesive ends, but this characteristic could not be directly assigned to the primary MMR deficiency. Furthermore, CPT treatment had no detectable effect on the repair of cohesive ends but significantly decreased the repair efficiency of non-complementary DSB. In conclusion, although our observations show that DSB repair efficiency by NHEJ decreases upon treatment with CPT, which possibly contributes to its cytotoxicity, it is quite unlikely that it accounts for the hypersensitivity of MMR-deficient cells to topoisomerase inhibitors.  相似文献   

13.
We have examined the interaction parameters, conformation, and functional significance of the human MutSalpha(.) proliferating cell nuclear antigen (PCNA) complex in mismatch repair. The two proteins associate with a 1:1 stoichiometry and a K(D) of 0.7 microm in the absence or presence of heteroduplex DNA. PCNA does not influence the affinity of MutSalpha for a mismatch, and mismatch-bound MutSalpha binds PCNA. Small angle x-ray scattering studies have established the molecular parameters of the complex, which are consistent with an elongated conformation in which the two proteins associate in an end-to-end fashion in a manner that does not involve an extended unstructured tether, as has been proposed for yeast MutSalpha and PCNA ( Shell, S. S., Putnam, C. D., and Kolodner, R. D. (2007) Mol. Cell 26, 565-578 ). MutSalpha variants lacking the PCNA interaction motif are functional in 3'- or 5'-directed mismatch-provoked excision, but display a partial defect in 5'-directed mismatch repair. This finding is consistent with the modest mutability conferred by inactivation of the MutSalpha PCNA interaction motif and suggests that interaction of the replication clamp with other repair protein(s) accounts for the essential role of PCNA in MutSalpha-dependent mismatch repair.  相似文献   

14.
DNA mismatch repair ensures genomic stability by correcting biosynthetic errors and by blocking homologous recombination. MutS-like and MutL-like proteins play important roles in these processes. In Escherichia coli and yeast these two types of proteins form a repair initiation complex that binds to mismatched DNA. However, whether human MutS and MutL homologs interact to form a complex has not been elucidated. Using immunoprecipitation and Western blot analysis we show here that human MSH2, MLH1, PMS2 and proliferating cell nuclear antigen (PCNA) can be co-immunoprecipitated, suggesting formation of a repair initiation complex among these proteins. Formation of the initiation complex is dependent on ATP hydrolysis and at least functional MSH2 and MLH1 proteins, because the complex could not be detected in tumor cells that produce truncated MLH1 or MSH2 protein. We also demonstrate that PCNA is required in human mismatch repair not only at the step of repair initiation, but also at the step of repair DNA re-synthesis.  相似文献   

15.
A number of studies have suggested a role for proliferating cell nuclear antigen (PCNA) in DNA mismatch repair (MMR). However, the majority of mutations in the POL30 gene encoding PCNA that cause MMR defects also cause replication and other repair defects that contribute to the increased mutation rate caused by these mutations. Here, 20 new pol30 mutants were identified and screened for MMR and other defects, resulting in the identification of two mutations, pol30-201 and pol30-204, that appear to cause MMR defects but little if any other defects. The pol30-204 mutation altered an amino acid (C81R) in the monomer-monomer interface region and resulted in a partial general MMR defect and a defect in MSH2-MSH6 binding in vitro. The pol30-201 mutation altered an amino acid (C22Y) located on the surface of the PCNA trimer that slides over the DNA but did not cause a defect in MSH2-MSH6 binding in vitro. The pol30-201 mutation caused an intermediate mutator phenotype. However, the pol30-201 mutation caused almost a complete defect in the repair of AC and GT mispairs and only a small defect in the repair of a "+T" insertion, an effect similar to that caused by an msh6Delta mutation, indicating that pol30-201 primarily effects MSH6-dependent MMR. The chromosomal double mutant msh3-FF>AA msh6-FF>AA eliminating the conserved FF residues of the PCNA interacting motif of these proteins caused a small (<10%) defect in MMR but showed synergistic interactions with mutations in POL30, indicating that the FF>AA substitution may not eliminate PCNA interactions in vivo. These results indicate that the interaction between PCNA and MMR proteins is more complex than was previously appreciated.  相似文献   

16.
The fragile X syndrome results from expansions as well as deletions of the repeating CGG.CCG DNA sequence in the 5'-untranslated region of the FMR1 gene on the X chromosome. The relative frequency of disease cases promoted by these two types of mutations cannot be ascertained at present because the routine clinical assay monitors only expansions. At least 30 articles have been reviewed that document the involvement of deletions of part or all of the CGG.CCG repeats along with varying extents of DNA flanking regions as well as very small mutations including single base pair changes. Studies of deletion mutants of CGG.CCG tracts in Escherichia coli plasmids revealed a similar spectrum of mutagenic products. The triplet repeat tract in a non-B conformation is the mutagen, not the sequence per se in the right-handed B helix. Hence, molecular investigations in a simple model organism may generate useful initial information toward therapeutic strategies for this disease.  相似文献   

17.
Human neurodegenerative and neuromuscular disorders are associated with a class of gene mutations represented by expansion of trinucleotide repeats. DNA testing is important for the diagnosis of these diseases because clinical discrimination is complicated by their late onset and frequently overlapping symptomatology. However, detection of pathologic alleles expanded up to several thousand trinucleotides poses a challenge for the introduction of rapid, fully automatic, and simple DNA diagnostic procedures. Here we propose a simple two-step polymerase chain reaction (PCR) protocol for rapid molecular diagnostics of myotonic dystrophy, Huntington's disease, and possibly also other triplet expansion diseases. Standard PCR amplification with target repeat flanking primers is used for the detection of alleles of up to 100 repeats; next, triplet-primed PCR is applied for detection of larger expansions. Automated capillary electrophoresis of amplicons allows rapid discrimination between normal, premutated and expanded (CTG/CAG)(n) alleles. Using the suggested protocol, the expanded allele was successfully detected in all test DNA samples with known genotypes. Our experience demonstrates that the suggested two-step PCR protocol provides high sensitivity, specificity, and reproducibility; is significantly less time-consuming; is easier to perform; and provides a better basis for automation than previous methods requiring Southern analysis. Therefore, it can be used for confirmation of uncertain clinical diagnoses, for prenatal testing in at-risk families, and, generally in research on these diseases.  相似文献   

18.
Hypervariable human minisatellite loci show a substantial level of germline instability, and spontaneous mutation rates to new length alleles have been measured directly by pedigree analysis. We now show that mutation events altering the number of minisatellite repeat units are not restricted to the germline, but also arise in other tissues. Mutant alleles can be detected at a very low frequency in lymphoblastoid cell lines and at much higher frequencies in clonal tumor cell populations, most particularly in gastrointestinal adenocarcinomas. Mutant alleles in these tumors are usually present at a dosage equal to or greater than that of the progenitor allele, indicating that most or all of the tumor cells carry the same clonally derived mutant allele. As with germline mutation, the incidence of somatic mutations in tumors varies from locus to locus, with the same locus showing the highest level of germline and somatic instability. Most length changes, as those in the germline, are of only a few repeat units; however, very large changes are also observed, implying that such mutations can occur in the absence of meiosis.  相似文献   

19.
A method was elaborated for simple and rapid diagnosis of myotonic dystrophy (MD). The method consists in estimating expansion of the CTG repeat in the myotonin protein kinase gene by means of PCR amplification of a gene fragment from genomic DNA and Southern hybridization of the amplified fragments with probe (CTG)9. Bashkir patients with Rossolimo-Steinert-Batten-Kurshmann MD were examined with this method.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号